×

Knot contact homology detects cabled, composite, and torus knots. (English) Zbl 1381.57005

Knot contact homology is a modern topological link invariant. Given a link \(L\subset \mathbb R^3\), its conormal lift \(\Lambda_{L}\) is a Legendrian submanifold in the unit cotangent bundle \(ST^{\ast}(\mathbb R^3)\) with contact structure equal to the kernel of the Liouville form. It is defined as the Legendrian contact homology of the differential graded algebra generated by Reeb chords whose differential counts holomorphic disks in the symplectization of \(ST^{\ast}(\mathbb R^3)\) with Lagrangian boundary condition \(\mathbb R\times \Lambda_{L}\). It also admits a combinatorial interpretation.
In the paper under review, the authors prove that knot contact homology detects each of the torus knots as well as being a cable or composite. More precisely, the authors use the fully non-commutative degree zero knot contact homology with \(U=1\), denoted by \(\widetilde{HC_0}\), for these purposes and prove the following:
(1) Given relatively prime integers \(p\) and \(q\), an oriented knot \(K\subset \mathbb R^3\) and the \((p,q)\)-torus knot \(T_{p,q}\), if \(\widetilde{HC_0}(K)\simeq \widetilde{HC_0}(T_{p,q})\), then \(K\) is isotopic to \(T_{p,q}\).
(2) If \(\Lambda_K\) is Legendrian isotopic to \(\Lambda_{T_{p,q}}\), then \(K\) is smoothly isotopic to \(T_{p,q}\) or its mirror. In addition, if the Legendrain isotopy sends meridian to meridian and longitude to longitude, then \(K\) is isotopic to \(T_{p,q}\).
(3) Given an oriented knot \(K\subset \mathbb R^3\) and the \((p,q)\)-cable of a knot \(J\) denoted by \(C_{p,q}(J)\), if \(\widetilde{HC_0}(K)\simeq \widetilde{HC_0}(C_{p,q}(J))\), then \(K\) is isotopic to a \((p',q')\)-cable of a knot \(J'\) where \(pq=p'q'\). On the other hand, if \(\widetilde{HC_0}(K)\simeq \widetilde{HC_0}(J)\) and \(J\) is composite, then so is \(K\).
The key component of the proof is a theorem of Cielebak, Ekholm, Latschev, and Ng which relates \(\widetilde{HC_0}\) to the knot group, see [K. Cieliebak et al., J. Éc. Polytech., Math. 4, 661–780 (2017; Zbl 1380.53101)].

MSC:

57M25 Knots and links in the \(3\)-sphere (MSC2010)
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
57R17 Symplectic and contact topology in high or arbitrary dimension

Citations:

Zbl 1380.53101

References:

[1] Burde, Gerhard; Zieschang, Heiner, Eine Kennzeichnung der Torusknoten, Math. Ann., 167, 169-176 (1966) · Zbl 0145.20502 · doi:10.1007/BF01362170
[2] K. Cieliebak, T. Ekholm, J. Latschev, and L. Ng, Relative contact homology, string topology, and the cord algebra, 2016, arXiv:1601.02167. · Zbl 1380.53101
[3] Christopher R. Cornwell, KCH representations, augmentations, and \(A\)-polynomials, 2013, arXiv:1310.7526. · Zbl 1388.57004
[4] Ekholm, Tobias; Etnyre, John B.; Ng, Lenhard; Sullivan, Michael G., Knot contact homology, Geom. Topol., 17, 2, 975-1112 (2013) · Zbl 1267.53095 · doi:10.2140/gt.2013.17.975
[5] Tobias Ekholm, Lenhard Ng, and Vivek Shende, A complete knot invariant from contact homology, 2016, arXiv:1606.07050. · Zbl 1385.57015
[6] Higman, Graham., The units of group-rings, Proc. London Math. Soc. (2), 46, 231-248 (1940) · JFM 66.0104.04 · doi:10.1112/plms/s2-46.1.231
[7] Howie, James; Short, Hamish, The band-sum problem, J. London Math. Soc. (2), 31, 3, 571-576 (1985) · Zbl 0546.57001 · doi:10.1112/jlms/s2-31.3.571
[8] Ng, Lenhard, Knot and braid invariants from contact homology. I, Geom. Topol., 9, 247-297 (2005) · Zbl 1111.57011 · doi:10.2140/gt.2005.9.247
[9] Ng, Lenhard, Knot and braid invariants from contact homology. II, Geom. Topol., 9, 1603-1637 (2005) · Zbl 1112.57001 · doi:10.2140/gt.2005.9.1603
[10] Ng, Lenhard, Framed knot contact homology, Duke Math. J., 141, 2, 365-406 (2008) · Zbl 1145.57010 · doi:10.1215/S0012-7094-08-14125-0
[11] Ng, Lenhard, A topological introduction to knot contact homology. Contact and symplectic topology, Bolyai Soc. Math. Stud. 26, 485-530 (2014), J\'anos Bolyai Math. Soc., Budapest · Zbl 1351.53094 · doi:10.1007/978-3-319-02036-5\_10
[12] Vivek Shende, The conormal torus is a complete knot invariant, 2016, arXiv:1604.03520. · Zbl 1426.57021
[13] Simon, Jonathan, Roots and centralizers of peripheral elements in knot groups, Math. Ann., 222, 3, 205-209 (1976) · Zbl 0314.55003 · doi:10.1007/BF01362577
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.