×

Framed knot contact homology. (English) Zbl 1145.57010

The author defines new knot invariants over the ring \(\mathbb Z[\lambda^{\pm1},\mu^{\pm1}]\). The strongest invariant, and the one from which the others derive, is a differential graded algebra over \(\mathbb Z[\lambda^{\pm1},\mu^{\pm1}]\) \(l\), where \(l\) is a certain (geometric) equivalence relation. One of the several methods given for constructing the algebra is in terms of a closed braid representation of the knot. The connection with contact geometry is seen through this method. Three other methods are given, two of which use the “cords” of the author’s paper “Knot and braid invariants from contact homology II”, (with an appendix by the author and S. Gadgil) in [Geom. Topol. 9, 1603–1637 (2005; Zbl 1112.57001)]. Numerous properties and strengths of the invariants are discussed. For example the author proves that the Kinoshita-Terasaka knot and its Conway mutant are distinguished by their differential graded algebras.

MSC:

57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
53D12 Lagrangian submanifolds; Maslov index
53D40 Symplectic aspects of Floer homology and cohomology

Citations:

Zbl 1112.57001

References:

[1] Y. Chekanov, Differential algebra of Legendrian links , Invent. Math. 150 (2002), 441–483. · Zbl 1029.57011 · doi:10.1007/s002220200212
[2] D. Cooper, M. Culler, H. Gillet, D. D. Long, and P. B. Shalen, Plane curves associated to character varieties of \(3\)-manifolds , Invent. Math. 118 (1994), 47–84. · Zbl 0842.57013 · doi:10.1007/BF01231526
[3] N. Dunfield and S. Garoufalidis, Non-triviality of the \(A\)-polynomial for knots in \(S^3\) , Algebr. Geom. Topol. 4 (2004), 1145–1153. · Zbl 1063.57012 · doi:10.2140/agt.2004.4.1145
[4] T. Ekholm, J. Etnyre, and M. Sullivan, The contact homology of Legendrian submanifolds in \(\mathbbR^2n+1\) , J. Differential Geom. 71 (2005), 177–305. · Zbl 1103.53048
[5] -, Non-isotopic Legendrian submanifolds in \(\mathbbR^2n+1\) , J. Differential Geom. 71 (2005), 85–128. · Zbl 1098.57013
[6] -, Orientations in Legendrian contact homology and exact Lagrangian immersions , Internat. J. Math. 16 (2005), 453–532. · Zbl 1076.53099 · doi:10.1142/S0129167X05002941
[7] Y. Eliashberg, “Invariants in contact topology” in Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998) , Doc. Math. 1998 , extra vol. II, Univ. Bielefeld, Bielefeld, Germany, 327–338. · Zbl 0913.53010
[8] Y. Eliashberg, A. Givental, and H. Hofer, “Introduction to symplectic field theory” in GAFA 2000 (Tel Aviv, 1999) , Geom. Funct. Anal. 2000 , special vol., part II, Birkhäuser, Basel, 2000, 560–673. · Zbl 0989.81114
[9] J. B. Etnyre, L. L. Ng, and J. M. Sabloff, Invariants of Legendrian knots and coherent orientations , J. Symplectic Geom. 1 (2002), 321–367. · Zbl 1024.57014 · doi:10.4310/JSG.2001.v1.n2.a5
[10] R. Fenn, L. Kauffman, and V. O. Manturov, Virtual knot theory, –.-,Unsolved problems , Fund. Math. 188 (2005), 293–323. · Zbl 1084.57005 · doi:10.4064/fm188-0-13
[11] R. Fenn, R. RimáNyi, and C. Rourke, The braid-permutation group , Topology 36 (1997), 123–135. · Zbl 0861.57010 · doi:10.1016/0040-9383(95)00072-0
[12] R. Fenn and C. Rourke, Racks and links in codimension two , J. Knot Theory Ramifications 1 (1992), 343–406. · Zbl 0787.57003 · doi:10.1142/S0218216592000203
[13] P. B. Kronheimer and T. S. Mrowka, Dehn surgery, the fundamental group and SU \((2)\), Math. Res. Lett. 11 (2004), 741–754. · Zbl 1084.57006 · doi:10.4310/MRL.2004.v11.n6.a3
[14] L. L. Ng, Computable Legendrian invariants , Topology 42 (2003), 55–82. · Zbl 1032.53070 · doi:10.1016/S0040-9383(02)00010-1
[15] -, Knot and braid invariants from contact homology, I , Geom. Topol. 9 (2005), 247–297. · Zbl 1111.57011 · doi:10.2140/gt.2005.9.247
[16] -, Knot and braid invariants from contact homology, II , with an appendix by S. Gadgil and L. L. Ng, Geom. Topol. 9 (2005), 1603–1637. · Zbl 1112.57001 · doi:10.2140/gt.2005.9.1603
[17] -, framedDGA.m, http://www.math.duke.edu/\(\sim\)ng/math D. Rolfsen, Knots and Links , Math. Lecture Ser. 7 , Publish or Perish, Berkeley, Calif., 1976.
[18] S. Satoh, Virtual knot presentation of ribbon torus-knots , J. Knot Theory Ramifications 9 (2000), 531–542. · Zbl 0997.57037 · doi:10.1142/S0218216500000293
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.