×

Quorum sensing in populations of spatially extended chaotic oscillators coupled indirectly via a heterogeneous environment. (English) Zbl 1381.34076

Summary: Many biological and chemical systems could be modeled by a population of oscillators coupled indirectly via a dynamical environment. Essentially, the environment by which the individual element communicates with each other is heterogeneous. Nevertheless, most of previous works considered the homogeneous case only. Here, we investigate the dynamical behaviors in a population of spatially distributed chaotic oscillators immersed in a heterogeneous environment. Various dynamical synchronization states (such as oscillation death, phase synchronization, and complete synchronized oscillation) as well as their transitions are explored. In particular, we uncover a non-traditional quorum sensing transition: increasing the population density leads to a transition from oscillation death to synchronized oscillation at first, but further increasing the density results in degeneration from complete synchronization to phase synchronization or even from phase synchronization to desynchronization. The underlying mechanism of this finding is attributed to the dual roles played by the population density. What’s more, by treating the environment as another component of the oscillator, the full system is then effectively equivalent to a locally coupled system. This fact allows us to utilize the master stability functions approach to predict the occurrence of complete synchronization oscillation, which agrees with that from the direct numerical integration of the system. The potential candidates for the experimental realization of our model are also discussed.

MSC:

34D06 Synchronization of solutions to ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations

References:

[1] Aldridge, J., Pye, E.K.: Cell density dependence of oscillatory metabolism. Nature (London) 259, 670 (1976) · doi:10.1038/259670a0
[2] Belykh, I., de Lange, E., Hasler, M.: Synchronization of bursting neurons: what matters in the network topology. Phys. Rev. Lett. 94, 188101 (2005) · doi:10.1103/PhysRevLett.94.188101
[3] Bers, D.M.: Cardiac excitation-contraction coupling. Nature 415, 198 (2002) · doi:10.1038/415198a
[4] Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366, 1 (2002) · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0
[5] Bressloff, P.C.: Ultrasensitivity and noise amplification in a model of V. harveyi quorum sensing. Phys. Rev. E 93, 062418 (2016) · doi:10.1103/PhysRevE.93.062418
[6] Bressloff, P.C., Lawley, S.D.: Dynamically active compartments coupled by a stochastically gated gap junction. J. Nonlinear Sci. (2017). doi:10.1007/s00332-017-9374-5 · Zbl 1379.35332
[7] Chandrasekar, V.K., Gopal, R., Senthilkumar, D.V., Lakshmanan, M.: Phase-flip chimera induced by environmental nonlocal coupling. Phys. Rev. E 94, 012208 (2016) · doi:10.1103/PhysRevE.94.012208
[8] Danino, T., Mondragón-Palomino, O., Tsimring, L., Hasty, J.: A synchronized quorum of genetic clocks. Nature (London) 463, 326 (2010) · doi:10.1038/nature08753
[9] De Monte, S., d’Ovidio, F., Danø, S., Sørensen, P.G.: Dynamical quorum sensing: population density encoded in cellular dynamics. Proc. Natl. Acad. Sci. USA 104, 18377 (2007) · doi:10.1073/pnas.0706089104
[10] Dilanji, G.E., Langebrake, J.B., De Leenheer, P., Hagen, S.J.: Quorum activation at a distance: spatiotemporal patterns of gene regulation from diffusion of an autoinducer signal. J. Am. Chem. Soc. 134, 5618 (2012) · doi:10.1021/ja211593q
[11] Fu, C., Lin, W., Huang, L., Wang, X.: Synchronization transition in networked chaotic oscillators: the viewpoint from partial synchronization. Phys. Rev. E 89, 052908 (2014) · doi:10.1103/PhysRevE.89.052908
[12] Garcia-Ojalvo, J., Elowitz, M.B., Strogatz, S.H.: Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci. USA 101, 10955 (2004) · Zbl 1064.92019 · doi:10.1073/pnas.0307095101
[13] Glass, L., Mackey, M.C.: From Clocks to Chaos: The Rhythms of Life. Princeton University, Princeton (1988) · Zbl 0705.92004
[14] Goldbeter, A.: Biochemical Oscillation and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behavior. Cambridge University, Cambridge (1996) · Zbl 0837.92009 · doi:10.1017/CBO9780511608193
[15] Gou, J., Chiang, W.Y., Lai, P.K., Ward, M.J., Li, Y.X.: A theory of snchrony by coupling through a diffusive chemical signal. Physica D 339, 1-17 (2017) · Zbl 1376.92020 · doi:10.1016/j.physd.2016.08.004
[16] Gou, J., Ward, M.J.: An asymptotic analysis of a 2-D model of dynamically active compartments coupled by bulk diffusion. J. Nonlinear Sci. 26, 979 (2016) · Zbl 1439.92024 · doi:10.1007/s00332-016-9296-7
[17] Gray, R.A., Pertsov, A.M., Jalife, J.: Spatial and temporal organization during cardiac fibrillation. Nature (London) 392, 75 (1998) · doi:10.1038/32164
[18] Gregor, T., Fujimoto, K., Masaki, N., Sawai, S.: The onset of collective behavior in social amoebae. Science 328, 1021 (2010) · doi:10.1126/science.1183415
[19] Hammond, C., Bergman, H., Brown, P.: Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 30, 357 (2007) · doi:10.1016/j.tins.2007.05.004
[20] Heagy, J.F., Carroll, T.L., Pecora, L.M.: Synchronous chaos in coupled oscillator systems. Phys. Rev. E 50, 1874 (1994) · doi:10.1103/PhysRevE.50.1874
[21] Huang, L., Chen, Q., Lai, Y.-C., Pecora, L.M.: Generic behavior of master-stability functions in coupled nonlinear dynamical systems. Phys. Rev. E 80, 036204 (2009) · doi:10.1103/PhysRevE.80.036204
[22] Kaneko, K.: Partition complexity in a network of chaotic elements. J. Phys. A Math. Gen. 24, 2107 (1991) · Zbl 0733.58039 · doi:10.1088/0305-4470/24/9/020
[23] Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, Berlin (1984) · Zbl 0558.76051 · doi:10.1007/978-3-642-69689-3
[24] Li, B.W., Fu, C., Zhang, H., Wang, X.G.: Synchronization and quorum sensing in an ensemble of indirectly coupled chaotic oscillators. Phys. Rev. E 86, 046207 (2012) · doi:10.1103/PhysRevE.86.046207
[25] Miller, M.B., Bassler, B.L.: Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165 (2001) · doi:10.1146/annurev.micro.55.1.165
[26] Mindlin, G.B., Solari, H.G., Natiello, M.A., Gilmore, R., Hou, X.J.: Topological analysis of chaotic time series data from the Belousov-Zhabotinskii reaction. J. Nonlinear Sci. 1, 147 (1991) · Zbl 0797.58057 · doi:10.1007/BF01209064
[27] Mormann, F., Kreuz, T., Andrzejak, R.G., David, P., Lehnertz, K., Elger, C.E.: Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res. 53, 173 (2003) · doi:10.1016/S0920-1211(03)00002-0
[28] Nielsen, K., Sørensen, P.G., Hynne, F.: Chaos in glycolysis. J. Theor. Biol. 186, 303 (1997) · doi:10.1006/jtbi.1996.0366
[29] Noorbakhsh, J., Schwab, D.J., Sgro, A.E., Gregor, T., Mehta, P.: Modeling oscillations and spiral waves in Dictyostelium populations. Phys. Rev. E 91, 062711 (2015) · doi:10.1103/PhysRevE.91.062711
[30] Panfilov, A.V., Hogeweg, P.: Mechanisms of cardiac fibrilation. Science 270, 1223 (1995)
[31] Pecora, L.M.: Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems. Phys. Rev. E 58, 347 (1998) · doi:10.1103/PhysRevE.58.347
[32] Pecora, L.M., Carroll, T.L.: Synchronization of chaotic systems. Chaos 25, 097611 (2015) · Zbl 1374.34002 · doi:10.1063/1.4917383
[33] Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821 (1990) · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[34] Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109 (1998) · doi:10.1103/PhysRevLett.80.2109
[35] Pikovsky, A.S., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001) · Zbl 0993.37002 · doi:10.1017/CBO9780511755743
[36] Resmi, V., Ambika, G., Amritkar, R.E.: Synchronized states in chaotic systems coupled indirectly through a dynamic environment. Phys. Rev. E 81, 046216 (2010) · doi:10.1103/PhysRevE.81.046216
[37] Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76, 1804 (1996) · Zbl 0896.60090 · doi:10.1103/PhysRevLett.76.1804
[38] Rossi, F., et al.: Chaotic dynamics in an unstirred ferroin catalyzed Belousov-Zhabotinsky reaction. Chem. Phys. Lett. 480, 322 (2009) · doi:10.1016/j.cplett.2009.09.018
[39] Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Abarbanel, H.D.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51, 980 (1995) · doi:10.1103/PhysRevE.51.980
[40] Sakaguchi, H.: Phase transition in globally coupled Rössler oscillators. Phys. Rev. E 61, 7212 (2000) · doi:10.1103/PhysRevE.61.7212
[41] Sakaguchi, H., Maeyama, S.: Dynamical quorum sensing and clustering dynamics in a population of spatially distributed active rotators. Phys. Rev. E 87, 024901 (2013) · doi:10.1103/PhysRevE.87.024901
[42] Schmitz, R.A., Graziani, K.R., Hudson, J.L.: Experimental evidence of chaotic states in the Belousov-Zhabotinskii reaction. J. Chem. Phys. 67, 3040 (1977) · doi:10.1063/1.435267
[43] Schütze, J., Mair, T., Hauser, M.J., Falcke, M., Wolf, J.: Metabolic synchronization by traveling waves in yeast cell layers. Biophys. J. 100, 809 (2011) · doi:10.1016/j.bpj.2010.12.3704
[44] Schwaba, D.J., Baeticab, A., Mehta, P.: Dynamical quorum-sensing in oscillators coupled through an external medium. Physica D 241, 1782 (2012) · Zbl 1401.92014 · doi:10.1016/j.physd.2012.08.005
[45] Shinomoto, S., Kuramoto, Y.: Phase transitions in active rotator systems. Prog. Theor. Phys. 75, 1105 (1986) · doi:10.1143/PTP.75.1105
[46] Singer, W., Gray, C.M.: Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555 (1995) · doi:10.1146/annurev.ne.18.030195.003011
[47] Singh, H., Parmananda, P.: Crowd synchrony in chaotic oscillators. Nonlinear Dyn. 80, 767 (2015) · doi:10.1007/s11071-015-1904-9
[48] Strogatz, S.: Sync: The Emerging Science of Spontaneous Order. Hyperion, New York (2003)
[49] Taylor, A.F., Tinsley, M.R., Wang, F., Huang, Z., Showalter, K.: Dynamical quorum sensing and synchronization in large populations of chemical oscillators. Science 323, 614 (2009) · doi:10.1126/science.1166253
[50] Toiya, M., Vanag, V.K., Epstein, I.R.: Diffusively coupled chemical oscillators in a microfluidic assembly. Angew. Chem. Int. Ed. 47, 7753 (2008) · doi:10.1002/anie.200802339
[51] Toth, R., Taylor, A.F., Tinsley, M.R.: Collective behavior of a population of chemically coupled oscillators. J. Phys. Chem. B 110, 10170 (2006) · doi:10.1021/jp060732z
[52] Vincent, U.E., Nana-Nbendjo, B.R., McClintock, P.V.E.: Collective dynamics of a network of ratchets coupled via a stochastic dynamical environment. Phys. Rev. E 87, 022913 (2013) · doi:10.1103/PhysRevE.87.022913
[53] Vladimirov, A.G., Kozyreff, G., Mandel, P.: Synchronization of weakly stable oscillators and semiconductor laser arrays. EPL 61, 613 (2003) · doi:10.1209/epl/i2003-00115-8
[54] Wiesenfeld, K., Colet, P., Strogatz, S.: Synchronization transitions in a disordered Josephson series array. Phys. Rev. Lett. 76, 404 (1996) · doi:10.1103/PhysRevLett.76.404
[55] Winfree, A.T.: The Geometry of Biological Time. Springer, New York (2001) · Zbl 1014.92001 · doi:10.1007/978-1-4757-3484-3
[56] Witkowski, F.X., et al.: Spatiotemporal evolution of ventricular fibrillation. Nature (London) 392, 78 (1998) · doi:10.1038/32170
[57] Zamora-Munt, J., Masoller, C., Garcia-Ojalvo, J., Roy, R.: Crowd synchrony and quorum sensing in delay-coupled lasers. Phys. Rev. Lett. 105, 264101 (2010) · doi:10.1103/PhysRevLett.105.264101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.