×

Adaptive synchronization of linear multi-agent systems with time-varying multiple delays. (English) Zbl 1380.93019

Summary: In this paper we consider the synchronization problem of continuous high-order linear agents sharing information through a communication network. The presence of communication delays implies that the distributed control protocol has to be implemented via outdated information. Delays are here considered as time-varying functions associated to each specific communication link. The cooperative tracking of the leader is achieved through a fully distributed control algorithm leveraging on a local adaptive strategy that weights the delayed information for all communication topologies in which the leading agent is globally reachable. In the analytical derivation the different time-varying delays are variables to be tackled simultaneously in the solution of the synchronization problem and the delay-dependent stability criterion is provided by combining the Lyapunov-Krasovskii functional with the Linear Matrix Inequality (LMI) approach. The LMI criterion provides the estimate of the delay upper bound that ensures the stability margin and it can be easily verified by using standard algorithms, such as the interior-point one. Some representative examples illustrate the theoretical results and show the effectiveness of the proposed approach.

MSC:

93A14 Decentralized systems
93C40 Adaptive control/observation systems
90B18 Communication networks in operations research
93D30 Lyapunov and storage functions
Full Text: DOI

References:

[1] Strogatz, S. H., Exploring complex networks, Nature, 410, 6825, 268-276 (2001) · Zbl 1370.90052
[2] Hengster-Movric, K., Synchronizing region approach to identical lti system state synchronization distributed control, Proceedings of the 20th International Conference on Process Control (PC), 54-59 (2015)
[3] Li, Z.; Duan, Z.; Chen, G.; Huang, L., Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint, IEEE Trans. Circuits Syst. I: Regul. Pap., 57, 1, 213-224 (2010) · Zbl 1468.93137
[4] Ren, W.; Cao, Y., Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues (2010), Springer Science & Business Media
[5] Santini, S.; Salvi, A.; Valente, A. S.; Pescapé, A.; Segata, M.; Cigno, R. L., A consensus-based approach for platooning with intervehicular communications and its validation in realistic scenarios, IEEE Trans. Veh. Technol., 66, 3, 1985-1999 (2017)
[6] Santini, S.; Salvi, A.; Valente, A. S.; Pescap, A.; Segata, M.; Cigno, R. L., A consensus-based approach for platooning with inter-vehicular communications, Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM), 1158-1166 (2015)
[7] Salvi, A.; Santini, S.; Valente, A. S., Design, analysis and performance evaluation of a third order distributed protocol for platooning in the presence of time-varying delays and switching topologies, Transp. Res. Part C: Emerg. Technol., 80, 360-383 (2017)
[8] Petrillo, A.; Pescapé, A.; Santini, S., A collaborative control strategy for platoons of autonomous vehicles in the presence of message falsification attacks, Proceedings of the 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), 110-115 (2017), IEEE
[9] Fiengo, G.; Petrillo, A.; Salvi, A.; Santini, S.; Tufo, M., A control strategy for reducing traffic waves in delayed vehicular networks, Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC), 2462-2467 (2016), IEEE
[10] Rodriguez, P.; Luna, A.; Candela, I.; Mujal, R.; Teodorescu, R.; Blaabjerg, F., Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions, IEEE Trans. Ind. Electron., 58, 1, 127-138 (2011)
[11] Dorfler, F.; Bullo, F., Synchronization and transient stability in power networks and nonuniform kuramoto oscillators, SIAM J. Control Optim., 50, 3, 1616-1642 (2012) · Zbl 1264.34105
[12] Sommer, P.; Wattenhofer, R., Gradient clock synchronization in wireless sensor networks, Proceedings of the 2009 International Conference on Information Processing in Sensor Networks, IPSN ’09, 37-48 (2009), IEEE Computer Society: IEEE Computer Society Washington, DC, USA
[13] Zheng, J.; Jamalipour, A., Wireless Sensor Networks: A Networking Perspective (2009), John Wiley & Sons · Zbl 1185.68058
[14] Olfati-Saber, R.; Fax, A.; Murray, R. M., Consensus and cooperation in networked multi-agent systems, Proc. IEEE, 95, 1, 215-233 (2007) · Zbl 1376.68138
[15] Jadbabaie, A.; Lin, J.; Morse, A. S., Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Autom. Control, 48, 6, 988-1001 (2003) · Zbl 1364.93514
[16] Fax, J. A.; Murray, R. M., Information flow and cooperative control of vehicle formations, IEEE Trans. Autom. Control, 49, 9, 1465-1476 (2004) · Zbl 1365.90056
[17] Zhang, H.; Lewis, F. L.; Das, A., Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback, IEEE Trans. Autom. Control, 56, 8, 1948-1952 (2011) · Zbl 1368.93265
[18] Li, Z.; Wen, G.; Duan, Z.; Ren, W., Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs, IEEE Trans. Autom. Control, 60, 4, 1152-1157 (2015) · Zbl 1360.93035
[19] Wang, R.; Dong, X.; Li, Q.; Ren, Z., Distributed adaptive time-varying formation for multi-agent systems with general high-order linear time-invariant dynamics, J. Frankl. Inst., 353, 10, 2290-2304 (2016) · Zbl 1347.93029
[20] Li, Z.; Ren, W.; Liu, X.; Fu, M., Consensus of multi-agent systems with general linear and lipschitz nonlinear dynamics using distributed adaptive protocols, IEEE Trans. Autom. Control, 58, 7, 1786-1791 (2013) · Zbl 1369.93032
[21] Li, Z.; Ren, W.; Liu, X.; Xie, L., Distributed consensus of linear multi-agent systems with adaptive dynamic protocols, Automatica, 49, 7, 1986-1995 (2013) · Zbl 1364.93023
[22] Richard, J.-P., Time-delay systems: an overview of some recent advances and open problems, Automatica, 39, 10, 1667-1694 (2003) · Zbl 1145.93302
[23] Kulkarni, A.; Kazi, F.; Singh, N., Multiagent synchronization under delay in position and velocity with application to formation control, Proceedings of the 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 1981-1986 (2013)
[24] Meng, Z.; Li, Z.; Vasilakos, A. V.; Chen, S., Delay-induced synchronization of identical linear multiagent systems, IEEE Trans. Cybern., 43, 2, 476-489 (2013)
[25] Murguia, C.; Fey, R. H.; Nijmeijer, H., Synchronization of identical linear systems and diffusive time-delayed couplings, IEEE Trans. Circuits Syst. I: Regul. Pap., 61, 6, 1801-1814 (2014)
[26] Hengster-Movric, K.; Lewis, F. L.; Šebek, M.; Vyhlídal, T., Cooperative synchronization control for agents with control delays: a synchronizing region approach, J. Frankl. Inst., 352, 5, 2002-2028 (2015) · Zbl 1395.93039
[27] Hou, W.; Fu, M. Y.; Zhang, H., Consensusability of linear multi-agent systems with time delay, Int. J. Robust Nonlinear Control, 26, 12, 2529-2541 (2016) · Zbl 1346.93020
[28] Song, Q.; Yu, W.; Cao, J.; Liu, F., Reaching synchronization in networked harmonic oscillators with outdated position data, IEEE Trans. Cybern., 46, 7, 1566-1578 (2016)
[29] Hou, W.; Fu, M.; Zhang, H.; Wu, Z., Consensus conditions for general second-order multi-agent systems with communication delay, Automatica, 75, 293-298 (2017) · Zbl 1352.93010
[30] Liu, C.-L.; Xie, L.; Liu, S.; Liu, F., Asynchronously compensated synchronization algorithm for multiple harmonic oscillators with communication delay, Int. J. Robust Nonlinear Control, 27, 2, 281-297 (2017) · Zbl 1353.93007
[31] Cao, Y.; Yu, W.; Ren, W.; Chen, G., An overview of recent progress in the study of distributed multi-agent coordination, IEEE Trans. Ind. Inform., 9, 1, 427-438 (2013)
[32] Zhang, H.; Zhao, M.; Wang, Z.; Wu, Z., Adaptive synchronization of an uncertain coupling complex network with time-delay, Nonlinear Dyn., 77, 3, 643-653 (2014) · Zbl 1314.93047
[33] Cheng, F.; Yu, W.; Wan, Y.; Cao, J., Distributed robust control for linear multiagent systems with intermittent communications, IEEE Trans. Circuits Syst. II: Express Briefs, 63, 9, 838-842 (2016)
[34] Zuo, Z.; Wang, C.; Ding, Z., Robust consensus control of uncertain multi-agent systems with input delay: a model reduction method, Int. J. Robust Nonlinear Control, (2016)
[35] Xia, Y.; Fu, M.; Shi, P., Analysis and Synthesis of Dynamical Systems with Time-delays, 387 (2009), Springer Science & Business Media · Zbl 1172.37300
[36] Horn, R. A.; Johnson, C. R., Matrix Analisis (1987), University Press: University Press Cambridge
[37] Li, C.; Chen, G., Synchronization in general complex dynamical networks with coupling delays, Phys. A: Stat. Mech. Appl., 343, 263-278 (2004)
[38] Fridman, E.; Shaked, U., Delay-dependent stability and \(H - \infty\) control: constant and time-varying delays, Int. J. Control, 76, 1, 48-60 (2003) · Zbl 1023.93032
[39] Kim, J.-H., Delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty, IEEE Trans. Autom. Control, 46, 5, 789-792 (2001) · Zbl 1008.93056
[40] Kharitonov, V. L.; Niculescu, S.-I., On the stability of linear systems with uncertain delay, IEEE Trans. Autom. Control, 48, 1, 127-132 (2003) · Zbl 1364.34102
[41] Gu, K.; Kharitonov, V.; Chen, J., Stability of Time-Delay Systems, Control Engineering (2012), Birkhäuser: Birkhäuser Boston
[42] Chen, G.; Lewis, F. L., Leader-following control for multiple inertial agents, Int. J. Robust Nonlinear Control, 21, 8, 925-942 (2011) · Zbl 1232.93024
[43] Feingold, D. G.; Varga, R. S., Block diagonally dominant matrices and generalizations of the gerschgorin circle theorem, Pac. J. Math., 12, 4, 1241-1250 (1962) · Zbl 0109.24802
[44] Fridman, E.; Orlov, Y., Exponential stability of linear distributed parameter systems with time-varying delays, Automatica, 45, 1, 194-201 (2009) · Zbl 1154.93404
[45] Fridman, E., Tutorial on Lyapunov-based methods for time-delay systems, Eur. J. Control, 20, 6, 271-283 (2014) · Zbl 1403.93158
[46] Fridman, E.; Shaked, U.; Liu, K., New conditions for delay-derivative-dependent stability, Automatica, 45, 11, 2723-2727 (2009) · Zbl 1180.93080
[47] Shi, L.; Zhu, H.; Zhong, S.; Zeng, Y.; Cheng, J., Synchronization for time-varying complex networks based on control, J. Comput. Appl. Math., 301, 178-187 (2016) · Zbl 1351.34089
[48] Boyd, S. P.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory, 15 (1994), SIAM · Zbl 0816.93004
[49] Motter, A. E.; Myers, S. A.; Anghel, M.; Nishikawa, T., Spontaneous synchrony in power-grid networks, Nat. Phys., 9, 3, 191-197 (2013)
[50] Tse, D.; Viswanath, P., Fundamentals of Wireless Communication (2005), Cambridge University Press · Zbl 1099.94006
[51] Krishnan, R.; Pragatheeswaran, J. K.; Ray, G., Robust stability of networked load frequency control systems with time-varying delays, Electr. Power Compon. Syst., 45, 3, 302-314 (2017)
[52] Andreasson, M.; Dimarogonas, D. V.; Sandberg, H.; Johansson, K. H., Distributed control of networked dynamical systems: static feedback, integral action and consensus, IEEE Trans. Autom. Control, 59, 7, 1750-1764 (2014) · Zbl 1360.93011
[53] Tegling, E.; Andreasson, M.; Simpson-Porco, J. W.; Sandberg, H., Improving performance of droop-controlled microgrids through distributed pi-control, Proceedings of the 2016 American Control Conference (ACC), 2321-2327 (2016)
[54] Shames, I.; Teixeira, A. M.; Sandberg, H.; Johansson, K. H., Distributed fault detection for interconnected second-order systems, Automatica, 47, 12, 2757-2764 (2011) · Zbl 1235.93052
[55] Ghosh, S.; Ali, M., Minimization of adverse effects of time delay in smart power grid, Proceedings of the IEEE 2014 Innovative Smart Grid Technologies Conference (ISGT), 1-5 (2014), IEEE
[56] Liu, J.; Gusrialdi, A.; Obradovic, D.; Hirche, S., Study on the effect of time delay on the performance of distributed power grids with networked cooperative control, Proceedings of the 1st IFAC Workshop on Estimation and Control of Networked Systems, 168-173 (2009), Citeseer
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.