×

Tutorial on Lyapunov-based methods for time-delay systems. (English) Zbl 1403.93158

Summary: Time-delay naturally appears in many control systems, and it is frequently a source of instability. However, for some systems, the presence of delay can have a stabilizing effect. Therefore, stability and control of time-delay systems is of theoretical and practical importance. Modern control systems usually employ digital technology for controller implementation, i.e. sampled-data control. A time-delay approach to sampled-data control, where the system is modeled as a continuous-time system with the delayed input/output became popular in the networked control systems, where the plant and the controller exchange data via communication network. In the present tutorial, introduction to Lyapunov-based methods for stability of time-delay systems is given together with some advanced results on the topic.

MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C57 Sampled-data control/observation systems
93C05 Linear systems in control theory
93C10 Nonlinear systems in control theory
93D25 Input-output approaches in control theory
93C15 Control/observation systems governed by ordinary differential equations
Full Text: DOI

References:

[1] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequality in Systems and Control Theory, vol. 15, SIAM, Studies in Applied Mathematics, Philadelphia, 1994. · Zbl 0816.93004
[2] Chen, W.-H.; Zheng, W. X., Delay-dependent robust stabilization for uncertain neutral systems with distributed delays, Automatica, 43, 95-104, (2007) · Zbl 1140.93466
[3] Coutinho, D.; de Souza, C., Delay-dependent robust stability and l2-gain analysis of a class of nonlinear time-delay systems, Automatica, 44, 8, 2006-2018, (2008) · Zbl 1283.93219
[4] Cushing, J. M., Volterra integro-differential equations in population dynamics, (Iannalli, M., Mathematics of Biology, (1981), Ligouri Editore Naples), 81-148
[5] El׳sgol׳tz, L.; Norkin, S., Introduction to the Theory and Applications of Differential Equations with Deviating Arguments, Mathematics in Science and Engineering Edition, vol. 105, (1973), Academic Press New York · Zbl 0287.34073
[6] Fridman, E., Using models with aftereffect in the problem of design of optimal digital control, Autom. Remote Control, 53, 10, 1523-1528, (1992) · Zbl 0805.49013
[7] Fridman, E., New Lyapunov-krasovskii functionals for stability of linear retarded and neutral type systems, Syst. Control Lett., 43, 309-319, (2001) · Zbl 0974.93028
[8] Fridman, E., Stability of linear descriptor systems with delaya Lyapunov-based approach, J. Math. Anal. Appl., 273, 1, 24-44, (2002) · Zbl 1032.34069
[9] Fridman, E., Descriptor discretized Lyapunov functional methodanalysis and design, IEEE Trans. Autom. Control, 51, 890-896, (2006) · Zbl 1366.93482
[10] Fridman, E., A new Lyapunov technique for robust control of systems with uncertain non-small delays, IMA J. Math. Control Inf., 23, 165-179, (2006) · Zbl 1095.93009
[11] Fridman, E., Stability of systems with uncertain delaysa new “complete” Lyapunov-krasovskii functional, IEEE Trans. Autom. Control, 51, 885-890, (2006) · Zbl 1366.93547
[12] Fridman, E., A refined input delay approach to sampled-data control, Automatica, 46, 421-427, (2010) · Zbl 1205.93099
[13] E. Fridman, Introduction to Time-delay Systems: Analysis and Control, Systems and Control: Foundations and Applications, Birkhäuser, Basel, 2014. · Zbl 1303.93005
[14] Fridman, E.; Dambrine, M.; Yeganefar, N., On input-to-state stability of systems with time-delaya matrix inequalities approach, Automatica, 44, 9, 2364-2369, (2008) · Zbl 1153.93502
[15] Fridman, E.; Gil, M., Stability of linear systems with time-varying delaysa direct frequency domain approach, J. Comput. Appl. Math., 200, 1, 61-66, (2007) · Zbl 1134.93034
[16] Fridman, E.; Niculescu, S. I., On complete Lyapunov-krasovskii functional techniques for uncertain systems with fast-varying delays, Int. J. Robust Nonlinear Control, 18, 3, 364-374, (2008) · Zbl 1284.93206
[17] Fridman, E.; Orlov, Y., Exponential stability of linear distributed parameter systems with time-varying delays, Automatica, 45, 2, 194-201, (2009) · Zbl 1154.93404
[18] Fridman, E.; Seuret, A.; Richard, J. P., Robust sampled-data stabilization of linear systemsan input delay approach, Automatica, 40, 8, 1441-1446, (2004) · Zbl 1072.93018
[19] Fridman, E.; Shaked, U., A descriptor system approach to \(H_\infty\) control of linear time-delay systems, IEEE Trans. Autom. control, 47, 2, 253-270, (2002) · Zbl 1364.93209
[20] Fridman, E.; Shaked, U., Delay dependent stability and \(H_\infty\) controlconstant and time-varying delays, Int. J. Control, 76, 1, 48-60, (2003) · Zbl 1023.93032
[21] Fridman, E.; Shaked, U., Input-output approach to stability and l_{2}-gain analysis of systems with time-varying delays, Syst. Control Lett., 55, 1041-1053, (2006) · Zbl 1120.93360
[22] Fridman, E.; Tsodik, G., \(H_\infty\) control of distributed and discrete delay systems via discretized Lyapunov functional, Eur. J. Control, 15, 1, 84-96, (2009) · Zbl 1298.93149
[23] Gao, H.; Chen, T.; Lam, J., A new delay system approach to network-based control, Automatica, 44, 1, 39-52, (2008) · Zbl 1138.93375
[24] Gil׳, M. I., Stability of vector differential delay equations, (2013), Birkhäuser Basel · Zbl 1272.34003
[25] F. Gouaisbaut, D. Peaucelle, Delay-dependent stability analysis of linear time delay systems, in: Proceedings of the 6th IFAC Workshop on Time-Delay System, L׳Aquila, Italy, July 2006. · Zbl 1293.93589
[26] Gu, K., Discretized LMI set in the stability problem of linear time-delay systems, Int. J. Control, 68, 923-934, (1997) · Zbl 0986.93061
[27] Gu, K., Stability problem of systems with multiple delay channels, Automatica, 46, 743-751, (2010) · Zbl 1193.93157
[28] Gu, K.; Kharitonov, V.; Chen, J., Stability of time-delay systems, (2003), Birkhäuser Boston · Zbl 1039.34067
[29] Gu, K.; Niculescu, S. I., Further remarks on additional dynamics in various model transformations of linear delay systems, IEEE Trans. Autom. Control, 46, 3, 497-500, (2001) · Zbl 1056.93511
[30] Halanay, A., Differential equation: stability, oscillations, time lags, (1966), Academic Press New York, USA · Zbl 0144.08701
[31] Hale, J. K.; Verduyn Lunel, S. M., Introduction to functional differential equations, (1993), Springer-Verlag New-York · Zbl 0787.34002
[32] He, Y.; Wang, Q. G.; Lin, C.; Wu, M., Delay-range-dependent stability for systems with time-varying delay, Automatica, 43, 371-376, (2007) · Zbl 1111.93073
[33] Huang, W., Generalization of lyapunov׳s theorem in a linear delay system, J. Math. Anal. Appl., 142, 83-94, (1989) · Zbl 0705.34084
[34] Huang, Y.-P.; Zhou, K., Robust stability of uncertain time-delay systems, IEEE Trans. Autom. Control, 45, 11, 2169-2173, (2000) · Zbl 0989.93066
[35] Kao, C.-Y.; Lincoln, B., Simple stability criteria for systems with time-varying delays, Automatica, 40, August (8), 1429-1434, (2004) · Zbl 1073.93047
[36] Khalil, H. K., Nonlinear systems, (2002), Prentice Hall Englewood Cliffs
[37] Kharitonov, V., Time-delay systems: Lyapunov functionals and matrices, (2013), Birkhäuser Boston · Zbl 1285.93071
[38] Kharitonov, V.; Melchor-Aguilar, D., On delay-dependent stability conditions, Syst. Control Lett., 40, 71-76, (2000) · Zbl 0977.93072
[39] Kharitonov, V.; Niculescu, S., On the stability of linear systems with uncertain delay, IEEE Trans. Autom. Control, 48, 127-132, (2003) · Zbl 1364.34102
[40] Kharitonov, V.; Zhabko, A., Lyapunov-krasovskii approach to the robust stability analysis of time-delay systems, Automatica, 39, 15-20, (2003) · Zbl 1014.93031
[41] Kolmanovskii, V.; Myshkis, A., Applied theory of functional differential equations, (1999), Kluwer Dordrecht · Zbl 0917.34001
[42] Kolmanovskii, V.; Richard, J. P., Stability of some linear systems with delays, IEEE Trans. Autom. Control, 44, 984-989, (1999) · Zbl 0964.34065
[43] Krasovskii, N., Stability of Motion, (1959), Stanford University Press 1963, Redwood City
[44] Li, X.; de Souza, C., Criteria for robust stability and stabilization of uncertain linear systems with state delay, Automatica, 33, 1657-1662, (1997) · Zbl 1422.93151
[45] Liu, K.; Fridman, E., Networked-based stabilization via discontinuous Lyapunov functionals, Int. J. Robust Nonlinear Control, 22, 4, 420-436, (2012) · Zbl 1261.93071
[46] Liu, K.; Fridman, E., Wirtinger׳s inequality and Lyapunov-based sampled-data stabilization, Automatica, 48, 102-108, (2012) · Zbl 1244.93094
[47] K. Liu, E. Fridman, L. Hetel, Network-based control via a novel analysis of hybrid systems with time-varying delays, in: Proceedings of the 51th IEEE Conference on Decision and Control, Hawaii, USA, December 2012.
[48] K. Liu, E. Fridman, L. Hetel, Networked control systems in the presence of scheduling protocols and communication delays, 2014. arXiv:1408.0147 · Zbl 1317.93212
[49] Liu, K.; Suplin, V.; Fridman, E., Stability of linear systems with general sawtooth delay, IMA J. Math. Control Inf. (Special issue on Time-delay Syst.), 27, 4, 419-436, (2010) · Zbl 1206.93080
[50] Malek-Zavareri, M.; Jamshidi, M., Time-Delay Systems Analysis, Optimization and Applications, Systems and Control Series, vol. 9, (1987), North-Holland Amsterdam · Zbl 0658.93001
[51] Michiels, W.; Morarescu, C. I.; Niculescu, S. I., Consensus problems with distributed delays, with application to traffic flow models, SIAM J. Control Optim., 48, 77-101, (2009) · Zbl 1182.93069
[52] Mikheev, Yu.; Sobolev, V.; Fridman, E., Asymptotic analysis of digital control systems, Autom. Remote Control, 49, 1175-1180, (1988) · Zbl 0692.93046
[53] Mirkin, L., Some remarks on the use of time-varying delay to model sample-and-hold circuits, IEEE Trans. Autom. Control, 52, 6, 1109-1112, (2007) · Zbl 1366.94798
[54] Mondie, S., Assessing the exact stability region of the single-delay scalar equation via its Lyapunov function, IMA J. Math. Control Inf., 29, 459-470, (2012) · Zbl 1256.93076
[55] Morarescu, C. I.; Niculescu, S. I.; Gu, K., Stability crossing curves of shifted gamma-distributed delay systems, SIAM J. Appl. Dyn. Syst., 6, 2, 475-493, (2007) · Zbl 1210.34104
[56] Naghshtabrizi, P.; Hespanha, J.; Teel, A., Exponential stability of impulsive systems with application to uncertain sampled-data systems, Syst. Control Lett., 57, 5, 378-385, (2008) · Zbl 1140.93036
[57] S.I. Niculescu, Delay effects on stability: a robust control approach, Lecture Notes in Control and Information Sciences, vol. 269, Springer-Verlag, London, 2001. · Zbl 0997.93001
[58] A. Papachristodoulou, Robust stabilization of nonlinear time delay systems using convex optimization, in: 44th IEEE Conference on Decision and Control, Sevilia, December 2005, pp. 5788-5793.
[59] Park, P. G., A delay-dependent stability criterion for systems with uncertain time-invariant delays, IEEE Trans. Autom. Control, 44, 876-877, (1999) · Zbl 0957.34069
[60] Park, P. G.; Ko, J.; Jeong, C., Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47, 235-238, (2011) · Zbl 1209.93076
[61] Razumikhin, B., On the stability of systems with a delay, Prikl. Math. Mech., 20, 500-512, (1956), (in Russian) · Zbl 0075.27301
[62] Richard, J. P., Time-delay systemsan overview of some recent advances and open problems, Automatica, 39, 1667-1694, (2003) · Zbl 1145.93302
[63] Seuret, A., A novel stability analysis of linear systems under asynchronous samplings, Automatica, 48, 1, 177-182, (2012) · Zbl 1244.93095
[64] Seuret, A.; Gouaisbaut, F., Wirtinger-based integral inequalityapplication to time-delay systems, Automatica, 49, 9, 2860-2866, (2013) · Zbl 1364.93740
[65] A. Seuret, F. Gouaisbaut, E. Fridman, Stability of systems with fast-varying delay using improved Wirtinger׳s inequality, in: Proceedings of the Conference on Decision and Control, 2013.
[66] Shustin, E.; Fridman, E., On delay-derivative-dependent stability of systems with fast-varying delays, Automatica, 43, 9, 1649-1655, (2007) · Zbl 1128.93049
[67] Solomon, O.; Fridman, E., New stability conditions for systems with distributed delays, Automatica, 49, 11, 3467-3475, (2013) · Zbl 1315.93068
[68] Sun, J.; Liu, G. P.; Chen, J., Delay-dependent stability and stabilization of neutral time-delay systems, Int. J. Robust Nonlinear Control, 19, 1364-1375, (2009) · Zbl 1169.93399
[69] Suplin, V.; Fridman, E.; Shaked, U., \(H_\infty\) control of linear uncertain time-delay systems - a projection approach, IEEE Trans. Autom. Control, 51, 4, 680-685, (2006) · Zbl 1366.93163
[70] Suplin, V.; Fridman, E.; Shaked, U., Sampled-data \(H_\infty\) control and filteringnonuniform uncertain sampling, Automatica, 43, 1072-1083, (2007) · Zbl 1282.93171
[71] Suplin, V.; Fridman, E.; Shaked, U., \(H_\infty\) sampled-data control of systems with time-delays, Int. J. Control, 82, 2, 298-309, (2009) · Zbl 1168.93374
[72] Zames, G., On the input-output stability of time-varying nonlinear feedback systems part one: conditions derived using concepts of loop gain, conicity, and positivity, IEEE Trans. Autom. Control, 11, 2, 228-238, (1966)
[73] Zhang, J.; Knopse, C.; Tsiotras, P., Stability of time-delay systemsequivalence between Lyapunov and scaled small-gain conditions, IEEE Trans. Autom. Control, 46, 3, 482-486, (2001) · Zbl 1056.93598
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.