×

Stability analysis and vibration characteristics of an axially moving plate in aero-thermal environment. (English) Zbl 1380.74054

Summary: The stability and vibration characteristics of an axially moving plate in an aero-thermal environment subjected to transverse excitation are investigated. In the modeling of the equation of motion, the influences of the in-plane thermal load and the perturbation aerodynamic pressure on the transverse bending deflection of the axially moving plate are taken into account. The governing equation of the plate in aero-thermal environment is established applying the Hamilton’s principle based on the von Karman nonlinear plate theory and linear potential flow theory. For the linear equation, the natural frequencies of the moving plate are analyzed by solving the generalized eigenvalue problem. The critical parameters of the moving velocity, flow velocity and temperature change for the divergence of the plate are obtained. For the nonlinear equation, the displacement time responses of the plate in different stability states subjected to transverse excitation are analyzed by numerical simulations. From the study, it can be seen that with the moving velocity, flow velocity and temperature change increasing, the fundamental natural frequency of the plate decreases. When the fundamental natural frequency decreases to 0, the plate is in a divergence type of instability. The critical moving velocity decreases with increasing flow velocities and temperature changes. The vibration amplitude of the plate in divergence state is larger than that in the stable state. The vibration amplitude increases with the flow velocity and temperature change increasing, which illustrates that the aero-thermal environment has significant effects on the stability and vibration properties of the axially moving plate.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74H55 Stability of dynamical problems in solid mechanics
74K20 Plates
74F05 Thermal effects in solid mechanics
Full Text: DOI

References:

[1] Mote, C.D.: Dynamic stability of an axially moving band. J. Frankl. Inst. 285(5), 329-346 (1968) · Zbl 0225.73048 · doi:10.1016/0016-0032(68)90482-1
[2] Öz, H.R.: Current research on the vibration and stability of axially-moving materials. J. Sound Vib. 20(2), 3-13 (1988)
[3] Wickert, J.A., Mote, C.D.: On the energetics of axially moving continua. J. Acoust. Soc. Am. 85, 1365-1368 (1989) · doi:10.1121/1.397418
[4] Pellicano, F., Vestroni, F.: Nonlinear dynamics and bifurcations of an axially moving beam. J. Vib. Acoust. 122(1), 21-30 (2000) · doi:10.1115/1.568433
[5] Chen, L.Q.: Analysis and control of transverse vibrations of axially moving strings. Appl. Mech. Rev. 58(2), 91-116 (2005) · doi:10.1115/1.1849169
[6] Guo, X.X., Wang, Z.M., Wang, Y.: Analysis of the coupled thermoelastic vibration for axially moving beam. J. Sound Vib. 325(3), 597-608 (2009) · doi:10.1016/j.jsv.2009.03.026
[7] Spelsberg-Korspeter, G., Kirillov, O.N., Hagedorn, P.: Modeling and stability analysis of an axially moving beam with frictional contact. J. Appl. Mech. 75(3), 031001 (2008) · doi:10.1115/1.2755166
[8] Ghayesh, M.H.: Stability and bifurcations of an axially moving beam with an intermediate spring support. Nonlinear Dyn. 69(1-2), 1-18 (2011)
[9] Yao, G., Zhang, Y.: Reliability and sensitivity analysis of an axially moving beam. Meccanica 51(3), 491-499 (2016) · Zbl 1339.74022 · doi:10.1007/s11012-015-0232-y
[10] Kazemirad, S., Ghayesh, M.H., Amabili, M.: Thermo-mechanical nonlinear dynamics of a buckled axially moving beam. Arch. Appl. Mech. 83(1), 25-42 (2013) · Zbl 1293.74227 · doi:10.1007/s00419-012-0630-8
[11] Yang, X.D., Zhang, W.: Nonlinear dynamics of axially moving beam with coupled longitudinal-transversal vibrations. Nonlinear Dyn. 78(4), 2547-2556 (2014) · Zbl 1305.91069 · doi:10.1007/s11071-014-1609-5
[12] Ding, H., Yan, Q.Y., Zu, J.W.: Chaotic dynamics of an axially accelerating viscoelastic beam in the supercritical regime. Int. J. Bifurc. Chaos 24(5), 1450062 (2014) · Zbl 1296.35185 · doi:10.1142/S021812741450062X
[13] Ghayesh, M.H., Farokhi, H.: Thermo-mechanical dynamics of three-dimensional axially moving beams. Nonlinear Dyn. 80(3), 1643-1660 (2015) · doi:10.1007/s11071-015-1968-6
[14] Lin, C.C.: Stability and vibration characteristics of axially moving plates. Int. J. Solids Struct. 34(24), 3179-3190 (1997) · Zbl 0942.74567 · doi:10.1016/S0020-7683(96)00181-3
[15] Banichuk, N., Jeronen, J., Neittaanmäki, P., Tuovinen, T.: Static instability analysis for travelling membranes and plates interacting with axially moving ideal fluid. J. Fluids Struct. 26(2), 274-291 (2010) · Zbl 1193.74061 · doi:10.1016/j.jfluidstructs.2009.09.006
[16] Saksa, T., Jeronen, J.: Estimates for divergence velocities of axially moving orthotropic thin plates. Mech. Des. Struct. Mach. 43(3), 294-313 (2015) · doi:10.1080/15397734.2014.987788
[17] Kim, J., Cho, J., Lee, U., Park, S.: Modal spectral element formulation for axially moving plates subjected to in-plane axial tension. Comput. Struct. 81(20), 2011-2020 (2003) · doi:10.1016/S0045-7949(03)00229-3
[18] Kwon, K., Lee, U.: Spectral element modeling and analysis of an axially moving thermoelastic beam-plate. J. Mech. Mater. Struct. 1(4), 605-632 (2006) · doi:10.2140/jomms.2006.1.605
[19] Ghayesh, M.H., Amabili, M.: Non-linear global dynamics of an axially moving plate. Int. J. Nonlinear Mech. 57(4), 16-30 (2013) · Zbl 1293.74264 · doi:10.1016/j.ijnonlinmec.2013.06.005
[20] Ghayesh, M.H., Amabili, M., Païdoussis, M.P.: Nonlinear dynamics of axially moving plates. J. Sound Vib. 332(2), 391-406 (2013) · doi:10.1016/j.jsv.2012.08.013
[21] Tang, Y.Q., Chen, L.Q.: Nonlinear free transverse vibrations of in-plane moving plates: without and with internal resonances. J. Sound Vib. 330(1), 110-126 (2011) · doi:10.1016/j.jsv.2010.07.005
[22] Yang, X.D., Zhang, W., Chen, L.Q., Yao, M.H.: Dynamical analysis of axially moving plate by finite difference method. Nonlinear Dyn. 67(2), 997-1006 (2012) · Zbl 1315.74014 · doi:10.1007/s11071-011-0042-2
[23] Zhou, Y.F., Wang, Z.M.: Vibrations of axially moving viscoelastic plate with parabolically varying thickness. J. Sound Vib. 316(316), 198-210 (2008)
[24] Hatami, S., Ronagh, H.R., Azhari, M.: Exact free vibration analysis of axially moving viscoelastic plates. Comput. Struct. 86(17-18), 1738-1746 (2008) · doi:10.1016/j.compstruc.2008.02.002
[25] Tang, Y.Q., Chen, L.Q.: Stability analysis and numerical confirmation in parametric resonance of axially moving viscoelastic plates with time-dependent speed. Eur. J. Mech. A. Solids 37, 106-121 (2013) · Zbl 1347.74058 · doi:10.1016/j.euromechsol.2012.05.010
[26] Raju, K.K., Rao, G.V.: Thermal post-buckling of a square plate resting on an elastic foundation by finite element method. Comput. Struct. 28(2), 195-199 (1988) · Zbl 0627.73057 · doi:10.1016/0045-7949(88)90039-9
[27] Yao, G., Li, F.M.: Stability analysis and active control of a nonlinear composite laminated plate with piezoelectric material in subsonic airflow. J. Eng. Math. 89, 147-161 (2014) · Zbl 1359.74329 · doi:10.1007/s10665-014-9708-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.