Skip to main content
Log in

Nonlinear dynamics of axially moving beam with coupled longitudinal–transversal vibrations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, the nonlinear vibrations of an axially moving beam are investigated by considering the coupling of the longitudinal and transversal motion. The Galerkin method is used to truncate the governing partial differential equations into a set of coupled nonlinear ordinary differential equations. By detuning the axially velocity, the exact parameters with which the system may turn to internal resonance are detected. The method of multiple scales is applied to the governing equations to study the nonlinear dynamics of the steady-state response caused by the internal–external resonance. The saturation and jump phenomena of such system have been reported by investigating the nonlinear amplitude–response curves with respect to external excitation, internal, and external detuning parameters. The longitudinal external excitation may trigger only longitudinal response when excitation amplitude is weak. However, beyond the critical excitation amplitude, the response energy will be transferred from the longitudinal motion to the transversal motion even the excitation is employed on the longitudinal direction. Such energy transfer due to saturation has the potential to be used in the vibration suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wickert, J.A., Mote Jr, C.D.: Current research on the vibration and stability of axially moving materials. Shock Vib. Digest. 20, 3–13 (1998)

    Article  Google Scholar 

  2. Marynowski, K.: Dynamics of the Axially Moving Orthotropic Web. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  3. Chen, L.Q.: Analysis and control of transverse vibrations of axially moving strings. Appl. Mech. Rev. 58, 91–116 (2005)

    Article  Google Scholar 

  4. Wickert, J.A.: Non-linear vibration of a traveling tensioned beam. Int. J. Non-linear Mech. 27, 503–517 (1992)

    Article  MATH  Google Scholar 

  5. Marynowski, K.: Non-linear vibrations of an axially moving viscoelastic web with time-dependent tension. Chaos Solitons Fract. 21, 481–490 (2004)

    Article  MATH  Google Scholar 

  6. Marynowski, K., Kapitaniak, T.: Zener internal damping in modelling of axially moving viscoelastic beam with time-dependent tension. Int. J. Non-linear Mech. 42, 118–131 (2007)

    Article  MATH  Google Scholar 

  7. Lin, C.C.: Stability and vibration characteristics of axially moving plates. Int. J. Solids Struct. 34, 3179–3190 (1997)

    Article  MATH  Google Scholar 

  8. Pellicano, F., Vestroni, F.: Nonlinear dynamics and bifurcations of an axially moving beam. J. Vib. Acoust. 122, 21–30 (2000)

    Article  Google Scholar 

  9. Sze, K.Y., Chen, S.H., Huang, J.L.: The incremental harmonic balance method for nonlinear vibration of axially moving beams. J. Sound Vib. 281, 611–626 (2005)

    Article  Google Scholar 

  10. Huang, J.L., Su, R.K.L., Li, W.H., Chen, S.H.: Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances. J. Sound Vib. 330, 471–485 (2011)

    Article  Google Scholar 

  11. Özhan, B.B., Pakdemirli, M.: A general solution procedure for the forced vibrations of a continuous system with cubic nonlinearities: primary resonance case. J. Sound Vib. 325, 894–906 (2009)

    Article  Google Scholar 

  12. Ghayesh, M.H., Yourdkhani, M., Balar, S., Reid, T.: Vibrations and stability of axially traveling laminated beams. Appl. Math. Comput. 217, 545–556 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ghayesh, M.H., Moradian, N.: Nonlinear dynamic response of axially moving stretched viscoelastic strings. Arch. Appl. Mech. 81, 781–799 (2011)

    Article  MATH  Google Scholar 

  14. Ghayesh, M.H.: Stability and bifurcations of an axially moving beam with an intermediate spring support. Nonlinear Dyn. 69(1–2), 193–210 (2012)

    Article  MathSciNet  Google Scholar 

  15. Ghayesh, M.H., Kafiabad, H.A., Reid, T.: Sub- and super-critical nonlinear dynamics of a harmonically excited axially moving beam. Int. J. Solids Struct. 49, 227–243 (2012)

    Article  Google Scholar 

  16. Ghayesh, M.H., Amabili, M.: Nonlinear dynamics of an axially moving Timoshenko beam with an internal resonance. Nonlinear Dyn. 73, 39–52 (2013)

    Article  MathSciNet  Google Scholar 

  17. Ghayesh, M.H., Amabili, M.: Non-linear global dynamics of an axially moving plate. Int. J. Non-linear Mech. 57, 16–30 (2013)

    Article  Google Scholar 

  18. Ghayesh, M.H., Amabili, M.: Nonlinear vibrations and stability of an axially moving Timoshenko beam with an intermediate spring support. Mech. Mach. Theory 67, 1–16 (2013)

    Article  MathSciNet  Google Scholar 

  19. Ghayesh, M.H., Amabili, M., Farohki, H.: Two-dimensional nonlinear dynamics of an axially moving viscoelastic beam with time-dependent axial speed. Chaos Solitons Fract. 52, 8–29 (2013)

    Article  Google Scholar 

  20. Ghayesh, M.H., Amabili, M.: Post-buckling bifurcations and stability of high-speed axially moving beams. Int. J. Mech. Sci. 68, 76–91 (2013)

    Article  MathSciNet  Google Scholar 

  21. Ding, H., Chen, L.-Q.: Galerkin methods for natural frequencies of high-speed axially moving beams. J. Sound Vib. 329, 3484–3494 (2010)

    Article  Google Scholar 

  22. Riedel, C.H., Tan, C.A.: Coupled forced response of an axially moving strip with internal resonance. Int. J. Non-Linear Mech. 37, 101–116 (2002)

    Article  MATH  Google Scholar 

  23. Tang, Y.-Q., Chen, L.-Q.: Nonlinear free transverse vibrations of in-plane moving plates: without and with internal resonances. J. Sound Vib. 330, 110–126 (2011)

    Article  Google Scholar 

  24. Ghayesh, M.H.: Nonlinear forced dynamics of an axially moving viscoelastic beam with an internal resonance. Int. J. Mech. Sci. 53, 1022–1037 (2011)

    Article  Google Scholar 

  25. Wang, Y.Q., Liang, L., Guo, X.H.: Internal resonance of axially moving laminated circular cylindrical shell. J. Sound Vib. 332, 6434–6450 (2013)

    Article  Google Scholar 

  26. Ghayesh, M.H.: Coupled longitudinal-transverse dynamics of an axially accelerating beam. J. Sound Vib. 331, 5107–5124 (2012)

    Article  Google Scholar 

  27. Ghayesh, M.H., Kazemirad, S., Amabili, M.: Coupled longitudinal-transverse dynamics of an axially moving beam with an internal resonance. Mech. Mach. Theory 52, 18–34 (2012)

    Article  Google Scholar 

  28. Ghayesh, M.H., Amabili, M., Farokhi, H.: Coupled global dynamics of an axially moving viscoelastic beam. Int. J. Non-linear Mech. 51, 54–74 (2013)

    Article  Google Scholar 

  29. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley-Interscience, New York (1979)

    MATH  Google Scholar 

  30. Marynowski, K.: Free vibration analysis of the axially moving Levy-type viscoelastic plate. Eur. J. Mech. A Solids 29, 879–886 (2010)

    Article  Google Scholar 

  31. Pakdemirli, M., Öz, H.R.: Infinite mode analysis and truncation to resonant modes of axially accelerated beam vibrations. J. Sound Vib. 311, 1052–1074 (2008)

    Article  Google Scholar 

  32. Yang, X.-D., Chen, L.-Q., Zu, J.W.: Vibrations and stability of an axially moving rectangular composite plate. ASME J. Appl. Mech. 78, 011018 (2011)

  33. Mamandi, A., Kargarnovin, M.H., Younesian, D.: Nonlinear dynamics of an inclined beam subjected to a moving load. Nonlinear Dyn. 60, 277–293 (2010)

    Article  MATH  Google Scholar 

  34. Eftekhari, M., Ziaei-Rad, S., Mahzoon, M.: Vibration suppression of a symmetrically cantilever composite beam using internal resonance under chordwise base excitation. Int. J. Non-linear Mech. 48, 86–100 (2013)

    Article  Google Scholar 

  35. Zhao, Y.Y., Xu, J.: Using the delayed feedback control and saturation control to suppress the vibration of the dynamical system. Nonlinear Dyn. 67, 735–754 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  36. Oueini, S.S., Nayfeh, A.H.: A theoretical and experimental implementation of a control method based on saturation. Nonlinear Dyn. 13, 189–202 (1997)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This investigation is supported by the National Natural Science Foundation of China (Project Nos. 11322214, 11172010, and 11290152) and by the State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and Astronautics) under Grant No. MCMS-0112G01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Dong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, XD., Zhang, W. Nonlinear dynamics of axially moving beam with coupled longitudinal–transversal vibrations. Nonlinear Dyn 78, 2547–2556 (2014). https://doi.org/10.1007/s11071-014-1609-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1609-5

Keywords

Navigation