×

Algebraic density property of homogeneous spaces. (English) Zbl 1201.14041

Let \(X\) be an affine algebraic variety with a transitive action of the algebraic automorphism group. Suppose that \(X\) is equipped with several fixed point free nondegenerate \(\mathrm{SL}_{2}\)-actions satisfying some mild additional assumption.
The authors prove that the Lie algebra generated by completely integrable algebraic vector fields on \(X\) coincides with the space of all algebraic vector fields. In particular, it is shown that apart from a few exceptions this fact is true for any homogeneous space of form \(G/R\) where \(G\) is a linear algebraic group and \(R\) is a closed proper reductive subgroup of \(G\).

MSC:

14R20 Group actions on affine varieties
32M05 Complex Lie groups, group actions on complex spaces
14R10 Affine spaces (automorphisms, embeddings, exotic structures, cancellation problem)
32M25 Complex vector fields, holomorphic foliations, \(\mathbb{C}\)-actions
14M17 Homogeneous spaces and generalizations

References:

[1] E. Andersén, Volume-preserving automorphisms of \( {\mathbb{C}^n} \) , Complex Var. Theory Appl. 14 (1990), no. 1–4, 223–235. · Zbl 0705.58008
[2] E. Andersén, L. Lempert, On the group of holomorphic automorphisms of \( {\mathbb{C}^n} \) , Invent. Math. 110 (1992), no. 2, 371–388. · Zbl 0770.32015 · doi:10.1007/BF01231337
[3] E. Andersén, Complete vector fields on \( {\mathbb{C}^n} \) , Proc. Amer. Math. Soc. 128 (2000), no. 4, 1079–1085. · Zbl 0958.32018 · doi:10.1090/S0002-9939-99-05123-0
[4] P. Bala, R. W. Carter, Classes of unipotent elements in simple algebraic groups. I, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 401–425. · Zbl 0364.22006 · doi:10.1017/S0305004100052403
[5] P. Bala, R. W. Carter, Classes of unipotent elements in simple algebraic groups. II, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 1, 1–17. · Zbl 0364.22007 · doi:10.1017/S0305004100052610
[6] N. Bourbaki, Elements of Mathematics, Lie Groups and Lie Algebras, Chaps. 7–9, Springer, Berlin, 2005. · Zbl 1139.17002
[7] C. Chevalley, Théorie des Groupes de Lie, Tome II, Groupes Algébriques, Actualités Sci. Ind., Vol. 1152, Hermann, Paris, 1951. Russian transl.: К. Шевалле, Теория групп Ли, II, Алгебраические группы, ИЛ, М., 1958.
[8] D. H. Collingwood, W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold, New York, 1993. · Zbl 0972.17008
[9] J. M. Drezet, Luna’s slice theorem and applications, in: Algebraic Group Actions and Quotients, Hindawi, Cairo, 2004, pp. 39–89.
[10] Е. Б. Дынкин, Полупростые подалгебры полулростых алгебр Ли, Мат. Сб., нов. сер. 32(72) (1952), 349–462. Engl. transl.: E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. (2) 6 (1957), 111–244. · Zbl 0324.20051
[11] H. Flenner, S. Kaliman, M. Zaidenberg, Completions of \( {\mathbb{C}^*} \) -surfaces, in: Affine Algebraic Geometry, Osaka University Press, Osaka, 2007, pp. 149–201. · Zbl 1126.14069
[12] W. Fulton, J. Harris, Representation Theory, A First Course, Graduate Texts in Mathematics, Vol. 129, Readings in Mathematics, Springer-Verlag, New York, 1991. · Zbl 0744.22001
[13] F. Forstnerič, J.-P. Rosay, Approximation of biholomorphic mappings by automorphisms of \( {\mathbb{C}^n} \) , Invent. Math. 112 (1993), no. 2, 323–349. · Zbl 0792.32011 · doi:10.1007/BF01232438
[14] F. D. Grosshans, Algebraic Homogeneous Spaces and Invariant Theory, Lecture Notes in Mathematics, Vol. 1673, Springer-Verlag, Berlin, 1997. · Zbl 0886.14020
[15] A. Huckleberry, A. Isaev, Infinite-dimensionality of the autromorphism groups of homogeneous Stein manifolds, Math. Ann. 344 (2009), no. 2, 279–291. · Zbl 1181.32026 · doi:10.1007/s00208-008-0304-6
[16] S. Kaliman, F. Kutzschebauch, Density property for hypersurfaces \( uv = p\left( {\bar x} \right) \) , Math. Z. 258 (2008), 115–131. · Zbl 1133.32012 · doi:10.1007/s00209-007-0162-z
[17] S. Kaliman, F. Kutzschebauch, Criteria for the density property of complex manifolds, Invent. Math. 172 (2008), 71–87. · Zbl 1143.32014 · doi:10.1007/s00222-007-0094-6
[18] J. M. Landsberg, L. Manivel, B. W. Westbury, Series of unipotent orbits, Experiment. Math. 13 (2004), 13–29. · Zbl 1108.14037
[19] G. D. Mostow, Fully reducible subgroups of algebraic groups, Amer. J. Math. 78 (1956), 200–221. · Zbl 0073.01603 · doi:10.2307/2372490
[20] Э. Б. Винберг, В. В. Горбацевич, А. Л. Онищик, Строение групп и алгебр Ли, Итоги науки и техн., Соврем. пробл. мат., Фунд. направл., т. 41, ВИНИТИ, М, 1990, 5–257. Engl. transl.: A. L. Onishchik, E. B. Vinberg, V. V. Gorbatsevich, Structure of Lie groups and Lie algebras, in: Lie Groups and Lie Algebras, III, Encyclopaedia of Mathematical Sciences, Vol. 41, Springer-Verlag, Berlin, 1994, pp. 1–248. · Zbl 1154.68045
[21] В. Л. Попов, О полиномиальных автомрфизмах аффинных пространств, Изв. РАН, сер. мат. 65 (2001), no. 3, 153–174; Engl. transl.: V. L. Popov, On polynomial automorphisms of affine spaces, Izv. Math. 65 (2001), no. 3, 569–587. · Zbl 1200.11037
[22] Э. Б. Винберг, В. Л. Попов, Теория инвариантов, Итоги науки и техн., Соврем. пробл. мат., фунд. направл., т. 55, ВИНИТИ, М, 1989, 137–314. Engl. transl.: V. L. Popov, E. B. Vinberg, Invariant theory, in: Algebraic Geometry, IV, Encyclopaedia of Mathematical Sciences, Vol. 55, Springer-Verlag, Berlin, 1994, pp. 123–284. · Zbl 0662.14017
[23] J.-P. Rosay, Automorphisms of \( {\mathbb{C}^n} \) , a survey of Andersén–Lempert theory and applications, in: Complex Geometric Analysis in Pohang (1997), Contemporary Mathematics, Vol. 222, Amer. Math. Soc., Providence, RI, 1999, pp. 131–145.
[24] G. Schwarz, The topology of algebraic quotients, in: Topological Methods in Algebraic Transformation Groups, Birkhäuser, Boston, 1989, pp. 135–151.
[25] A. Toth, D. Varolin, Holomorphic diffeomorphisms of complex semisimple Lie groups, Invent. Math. 139 (2000), no. 2, 351–369. · Zbl 0956.32022 · doi:10.1007/s002229900029
[26] A. Toth, D. Varolin, Holomorphic diffeomorphisms of semisimple homogenous spaces, Compos. Math. 142 (2006), no. 5, 1308–1326. · Zbl 1105.32014 · doi:10.1112/S0010437X06002077
[27] D. Varolin, The density property for complex manifolds and geometric structures, J. Geom. Anal. 11 (2001), no. 1, 135–160. · Zbl 0994.32019
[28] D. Varolin, The density property for complex manifolds and geometric structures, II, Internat. J. Math. 11 (2000), no. 6, 837–847. · Zbl 0977.32016
[29] J. Winkelmann, Invariant rings and quasiaffine quotients, Math. Z. 244 (2003), no. 1, 163–174. · Zbl 1019.13003 · doi:10.1007/s00209-002-0484-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.