×

Medial axis and singularities. (English) Zbl 1380.32009

This comprehensive paper is devoted to the study of the medial axis and other related sets associated with closed subsets \(X\) of \(\mathbb R^n\) definable in polynomially bounded o-minimal structures. Many of the results also hold without definability assumption. The focus lies on the connection of the above-mentioned sets to the singularities of \(X\).
The medial axis \(M_X\) is the set of points \(x\) with more than one closest point in \(X\). The central set \(C_X\) is the set of centers of maximal balls contained in \(\mathbb R^n \setminus X\). Section 2 in the paper presents a detailed study of these sets (among others) as well as of the properties of the related set-valued functions \(\mathbb R^n \ni x \mapsto m(x) := \{y \in X : \|x-y\| = d(x,X)\}\) and \(X \ni a \mapsto N(a) :=\{x \in \mathbb R^n : a \in m(x)\}\). Furthermore, the connection of \(M_X\) to the singularities (i.e., non-differentiability points) of the function \(\delta(x) := d(x,X)^2\) is explicated.
Section 3 is concerned with the question when the medial axis reaches the singularities of hypersurfaces. For \(k \in \mathbb N \cup \{\infty,\omega\}\) let \(\text{Reg}_k X := \{x \in X : X \text{ is a } C^k \text{ submanifold at } x\}\) and \(\text{Sng}_k X := X \setminus \text{Reg}_k X\). A complete answer is given in the plane case when \(X\) is a pure one-dimensional closed set in \(\mathbb R^2\) definable in a polynomially bounded o-minimal structure. If \(0 \in \text{Reg}_1 X \cap \text{Sgn}_2 X\), then \(0 \in \overline {M_X}\) if and only if \(X\) is superquadratic at \(0\). The latter means that, near \(0\), \(X\) is the graph of a function germ of order \(<2\). If \(0 \in \text{Sgn}_1 X\) and the germ \((X \setminus \{0\},0)\) has at least two connected components, then \(0 \in \overline {M_X}\). If the germ \((X \setminus \{0\},0)\) is connected, then \(0 \not\in \overline {M_X}\). If \(0 \in \text{Reg}_2 X\), then \(0 \not\in \overline {M_X}\). Furthermore, a description of the Peano tangent cone \(C_0(M_X)\) of \(M_X\) at \(0\) is given in the case that \(M_X\) reaches \(X\).
Section 4 deals with hypersurfaces \(X\) in \(\mathbb R^n\). First, it is proved that \(C_0(M_X) \supseteq \overline {M_{C_0(X)}}\) provided that \(C_0(X)\) has empty interior and is not contained in a hyperplane. For \(C^1\) hypersurfaces \(X\) the relation between the local Lipschitz constant of a continuous unit normal vector field at \(a \in X\), the local reach radius at \(a\), and the condition \(a \in \overline {M_X}\) is clarified. Finally, for points \(a\) in a closed nonempty subset \(X \subseteq \mathbb R^n\) definable in a polynomially bounded o-minimal structure a notion of definable reaching radius \(r(a)\) is developed. It is proved that \(r(a) = 0\) if and only if \(a \in \overline {M_X}\).

MSC:

32B20 Semi-analytic sets, subanalytic sets, and generalizations
54F99 Special properties of topological spaces
03C64 Model theory of ordered structures; o-minimality

References:

[1] Birbrair, L., Siersma, D.: Metric properties of conflict sets. Houst. J. Math. 35(1), 73-80 (2009) · Zbl 1158.14045
[2] Bochnak, J., Risler, J.-J.: Sur les exposants de Łojasiewicz. Comment. Math. Helv. 50, 493-508 (1975) · Zbl 0321.32006 · doi:10.1007/BF02565764
[3] Chazal, F., Soufflet, R.: Stability and finiteness properties of medial axis and skeleton. J. Dyn. Control Syst. 10(2), 149-170 (2004) · Zbl 1050.32007 · doi:10.1023/B:JODS.0000024119.38784.ff
[4] Clarke, F.: Generalized gradients and applications. Trans. Am. Math. Soc. 205, 247-262 (1975) · Zbl 0307.26012 · doi:10.1090/S0002-9947-1975-0367131-6
[5] Coste, M.: An introduction to o-minimal geometry. Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligrafici Internazionali, Pisa (2000) · Zbl 0547.58011
[6] Denkowska, Z., Denkowski, M.P.: Kuratowski convergence and connected components. J. Math. Anal. Appl. 387, 48-65 (2012) · Zbl 1228.32010 · doi:10.1016/j.jmaa.2011.08.058
[7] Denkowska, Z., Denkowski, M.P.: A long and winding road to o-minimal structures. J. Singul. 13, 57-86 (2015) · Zbl 1315.32003 · doi:10.5427/jsing.2015.13d
[8] Denkowska, Z., Stasica, J.: Ensembles sous-analytiques à la polonaise, Hermann (2007) · Zbl 1153.32011
[9] Denkowski, M.P.: On the points realizing the distance to a definable set. J. Math. Anal. Appl. 378, 592-602 (2011) · Zbl 1219.32006 · doi:10.1016/j.jmaa.2011.02.002
[10] Denkowski, M.P.: The Kuratowski convergence of medial axes (2015). arXiv:1602.05422 · Zbl 0307.26012
[11] Denkowski, M.P.: On Yomdin’s version of a Lipschitz implicit function theorem (2015). arXiv:1610.07905 · Zbl 1219.32006
[12] Denkowski, M.P., Pełszyńska, P.: On definable multifunctions and Łojasiewicz inequalities (2014). arXiv:1610.09401 · Zbl 1393.49009
[13] Fremlin, D.H.: Skeletons and central sets. Bull. Lond. Math. Soc. (3) 74, 701-720 (1997) · Zbl 0949.54050 · doi:10.1112/S0024611597000233
[14] Ghomi, M., Howard, R.: Tangent cones and regularity of hypersurfaces. J. Reine Angew. Math. 697, 221-247 (2014) · Zbl 1305.53010
[15] Poly, J.-B., Raby, G.: Fonction distance et singularités. Bull. Acad. Math. 108, 187-195 (1984) · Zbl 0547.58011
[16] Thorpe, J.A.: Elementary Topics in Differential Geometry. Springer, Berlin (1979) · Zbl 0404.53001 · doi:10.1007/978-1-4612-6153-7
[17] Yomdin, Y.: On the local structure of a generic central set. Compos. Math. 43(2), 225-238 (1981) · Zbl 0465.58008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.