×

On the points realizing the distance to a definable set. (English) Zbl 1219.32006

A lemma due to J.Nash [Ann.Math.(2) 56, 405–421 (1952; Zbl 0048.38501)] states that a manifold \(M\) analytically embedded in \(\mathbb R^n\) has a neighborhood \(N\) in \(\mathbb R^n\) in which there is a unique nearest point \(y \in M\) for each \(x \in N\), and in which \(y\) depends analytically on \(x\).
In the present paper this is generalized to definable/subanalytic sets \(M\) with parameters. More precisely: Let \(M \subseteq \mathbb R_t^k \times \mathbb R_x^n\) be nonempty with locally closed \(t\)-sections \(M_t\). Suppose that \(M\) is definable (in some fixed o-minimal structure). Then there exists a definable set \(W \subseteq \mathbb R_t^k \times \mathbb R_x^n\) with open \(t\)-sections \(W_t\) such that \(M_t \subseteq W_t\) is closed in \(W_t\) and \(m(t,x) \neq \emptyset\) for \(x \in W_t\), where \[ m(t,x):=\{y \in M_t : \|x-y\|=\text{dist}(x,M_t)\}, \quad (t,x) \in W. \] Moreover, the multifunction \(m(t,x)\) is definable; there is a definable set \(E \subseteq W\) with nowhere dense sections such that \(m(t,x)\) is single-valued iff \(x \in W_t \setminus E_t\); and for any integer \(p \geq 2\) there is a definable set \(E \subseteq F^p \subseteq W\) with closed and nowhere dense sections such that \(M_t\) is a \(C^p\)-submanifold near \(x \not\in F^p_t\) and \(m(t,\cdot)\) is \(C^{p-1}\) near \(x \in W_t \setminus \overline{E_t}\) iff \(x \not\in F^p_t\).
The author gives also a version for subanalytic sets \(M \subseteq \mathbb R^n\). (Note that the subanalytic subsets of \(\mathbb R^n\) do not form an o-minimal structure, in contrast to globally subanalytic sets.)
Finally, properties of \(m\) as a multifunction are investigated.

MSC:

32B20 Semi-analytic sets, subanalytic sets, and generalizations
03C64 Model theory of ordered structures; o-minimality
14P15 Real-analytic and semi-analytic sets

Citations:

Zbl 0048.38501
Full Text: DOI

References:

[1] Birbrair, L.; Siersma, D., Metric properties of conflict sets, Houston J. Math., 35, 1, 73-80 (2009) · Zbl 1158.14045
[2] M. Coste, An Introduction to o-Minimal Geometry, Dottorato di Ricerca in Matematica, Dip. Mat. Univ. Pisa, Pisa, 2000.; M. Coste, An Introduction to o-Minimal Geometry, Dottorato di Ricerca in Matematica, Dip. Mat. Univ. Pisa, Pisa, 2000.
[3] Z. Denkowska, M.P. Denkowski, Kuratowski convergence and connected components, preprint 593, Institut de Mathématiques de Bourgogne, 2010.; Z. Denkowska, M.P. Denkowski, Kuratowski convergence and connected components, preprint 593, Institut de Mathématiques de Bourgogne, 2010. · Zbl 1228.32010
[4] Denkowska, Z.; Łojasiewicz, S.; Stasica, J., Certaines propriétés élémentaires des ensembles sous-analytiques, Bull. Pol. Acad. Sci. Math., XXVII, 7-8, 529-536 (1979) · Zbl 0435.32006
[5] Denkowska, Z.; Stasica, J., Ensembles Sous-Analytiques à la Polonaise (2008), Hermann: Hermann Paris
[6] Kurdyka, K., Points réguliers d’un sous-analytique, Ann. Inst. Fourier, 38, 1, 133-156 (1988) · Zbl 0619.32007
[7] Krantz, S. G.; Parker, H. R., Distance to \(C^k\) hypersurfaces, J. Differential Equations, 40, 116-120 (1981) · Zbl 0431.57009
[8] Le Gal, O.; Rolin, J.-P., An o-minimal structure which does not admit \(C^\infty\) cellular decomposition, Ann. Inst. Fourier, 59, 2, 543-562 (2009) · Zbl 1193.03065
[9] van Manen, M., Conflict sets, orthotomics, pedals and billiards as canonical relations, Math. Proc. Cambridge Philos. Soc., 141, 339-353 (2009) · Zbl 1120.58027
[10] Nash, J., Real algebraic manifolds, Ann. of Math., 56, 405-421 (1952) · Zbl 0048.38501
[11] Poly, J.-B.; Raby, G., Fonction distance et singularités, Bull. Sci. Math., 108, 187-195 (1984) · Zbl 0547.58011
[12] Raby, G., Théorème des zéros sous-analytique et inégalités de Łojasiewicz, (Séminaire Lelong-Dolbeault-Skoda (Analyse) 22e et 23e année, 1982/1983. Séminaire Lelong-Dolbeault-Skoda (Analyse) 22e et 23e année, 1982/1983, Lecture Notes in Math., vol. 1028 (1983)) · Zbl 0526.32008
[13] Siersma, D., Geometry of conflict sets in the plane, (Geometry and Topology of Caustics. Geometry and Topology of Caustics, Caustics ’98. Geometry and Topology of Caustics. Geometry and Topology of Caustics, Caustics ’98, Banach Center Publ., vol. 50 (1999), Polish Acad. Sci.: Polish Acad. Sci. Warsaw) · Zbl 0945.68184
[14] Tamm, M., Subanalytic sets in the calculus of variations, Acta Math., 146, 3-4, 167-199 (1981) · Zbl 0478.58010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.