×

Perturbation of the semiclassical Schrödinger equation on negatively curved surfaces. (English) Zbl 1379.37129

The authors consider the semiclassical Schrödinger equation on a compact negatively curved surface. For any sequence of initial data microlocalized on the unit cotangent bundle, they look at the quantum evolution (with respect to the Ehrenfest time) under small perturbations of the Schrödinger equation, and they prove that, in the semiclassical limit and for typical perturbations, the solutions become equidistributed on the unit cotangent bundle.

MSC:

37K55 Perturbations, KAM theory for infinite-dimensional Hamiltonian and Lagrangian systems
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
58J51 Relations between spectral theory and ergodic theory, e.g., quantum unique ergodicity
81Q50 Quantum chaos
35Q41 Time-dependent Schrödinger equations and Dirac equations
35R01 PDEs on manifolds

References:

[1] R.Abraham, Lectures of Smale on Differential Topology, Lectures at Columbia University (Columbia University, New York, 1962).
[2] N.Anantharaman and S.Nonnenmacher, Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Festival Yves Colin de Verdière. Ann. Inst. Fourier (Grenoble)57 (2007), 2465-2523.10.5802/aif.2340 · Zbl 1145.81033 · doi:10.5802/aif.2340
[3] N.Anantharaman and G.Rivière, Dispersion and controllability for the Schrödinger equation on negatively curved manifolds, Anal. PDE5 (2012), 313-338.10.2140/apde.2012.5.313 · Zbl 1267.35176 · doi:10.2140/apde.2012.5.313
[4] D. V.Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, in Tr. Mat. Inst. Steklova, Proceeding of the Steklov Institute of Mathematics, Volume 90 (American Mathematical Society, 1967). · Zbl 0163.43604
[5] V.Baladi and C.Liverani, Exponential decay of correlations for piecewise cone hyperbolic contact flows, Comm. Math. Phys.314 (2012), 689-773.10.1007/s00220-012-1538-4 · Zbl 1386.37030 · doi:10.1007/s00220-012-1538-4
[6] D.Bambusi, S.Graffi and T.Paul, Long time semiclassical approximation of quantum flows: a proof of the Ehrenfest time, Asymptot. Anal.21 (1999), 149-160. · Zbl 0934.35142
[7] A.Besse, Manifolds all of whose Geodesics are Closed, in Ergebnisse der Mathematik und ihrer Grenzgebiete, Volume 93 (Springer, New York, Heidelburg, Berlin, 1978). · Zbl 0387.53010
[8] F.Bonechi and S.De Bièvre, Exponential mixing and |log ħ| time scales in quantized hyperbolic maps on the torus, Comm. Math. Phys.211 (2000), 659-686.10.1007/s002200050831 · Zbl 1053.81032 · doi:10.1007/s002200050831
[9] J. M.Bouclet and S.De Bièvre, Long time propagation and control on scarring for perturbed quantized hyperbolic toral automorphisms, Ann. Henri Poincaré6 (2005), 885-913.10.1007/s00023-005-0228-6 · Zbl 1088.81049 · doi:10.1007/s00023-005-0228-6
[10] A.Bouzouina and D.Robert, Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J.111 (2002), 223-252.10.1215/S0012-7094-02-11122-3 · Zbl 1069.35061 · doi:10.1215/S0012-7094-02-11122-3
[11] M.Burger, Horocycle flow on geometrically finite surfaces, Duke Math. J.61 (1990), 779-803.10.1215/S0012-7094-90-06129-0 · Zbl 0723.58041 · doi:10.1215/S0012-7094-90-06129-0
[12] Y.Canzani, D.Jakobson and J.Toth, On the distribution of perturbations of Schrödinger eigenfunctions, J. Spectr. Theory4 (2014), 283-307.10.4171/JST/70 · Zbl 1296.35102 · doi:10.4171/JST/70
[13] Y.Colin de Verdière, Ergodicité et fonctions propres du Laplacien, Comm. Math. Phys.102 (1985), 497-502.10.1007/BF01209296 · Zbl 0592.58050 · doi:10.1007/BF01209296
[14] M.Combescure and D.Robert, Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow, Asymptot. Anal.14 (1997), 377-404. · Zbl 0894.35026
[15] R.de la Llave, J. M.Marco and R.Moriyon, Canonical perturbation theory of Anosov systems and regularity results for the Livsic cohomology equation, Ann. Math.123 (1986), 537-611.10.2307/1971334 · Zbl 0603.58016 · doi:10.2307/1971334
[16] R.de la Llave and R.Obaya, Regularity of the composition operator in spaces of Hölder functions, Discrete Contin. Dyn. Syst.5 (1999), 157-184. · Zbl 0956.47029
[17] S.Dyatlov and C.Guillarmou, Microlocal limits of plane waves and Eisenstein functions, Ann. Sci. ENS47 (2014), 371-448. · Zbl 1297.58007
[18] J.EelsJr., On the geometry of function spaces, in Symp. Inter. de Topología Alg. Mexico, pp. 303-308 (Universidad Nacional Autónoma de México y la Unesco, México, 1958). · Zbl 0092.11302
[19] J.EelsJr., A setting for global analysis, Bull. Amer. Math. Soc. (N.S.)72(5) (1966), 751-807.10.1090/S0002-9904-1966-11558-6 · doi:10.1090/S0002-9904-1966-11558-6
[20] H. I.Eliasson, Geometry of manifolds of maps, J. Differential Geom.1 (1967), 169-194.10.4310/jdg/1214427887 · Zbl 0163.43901 · doi:10.4310/jdg/1214427887
[21] S.Eswarathasan and J.Toth, Average pointwise bounds for deformations of Schrodinger eigenfunctions, Ann. Henri Poincaré14 (2012), 611-637.10.1007/s00023-012-0198-4 · Zbl 1263.81186 · doi:10.1007/s00023-012-0198-4
[22] F.Faure, Semi-classical formula beyond the Ehrenfest time in quantum chaos. I. Trace formula, Festival Yves Colin de Verdière. Ann. Inst. Fourier (Grenoble)57 (2007), 2525-2599.10.5802/aif.2341 · Zbl 1145.81035 · doi:10.5802/aif.2341
[23] F.Faure and M.Tsujii, The semiclassical zeta function for geodesic flows on negatively curved manifolds, preprint, 2013, arXiv:1311.4932. · Zbl 1379.37054
[24] H.Furstenberg, The unique ergodicity of the horocycle flow, in Recent Advances in Topological Dynamics (Proc. Conf., Yale Univ., New Haven, CT, 1972; in honor of Gustav Arnold Hedlund), Lecture Notes in Mathematics, Volume 318, pp. 95-115 (Springer, Berlin, 1973). · Zbl 0256.58009
[25] S.Gallot, D.Hulin and J.Lafontaine, Riemannian Geometry, Serie Universitext (Springer-Verlag, Berlin Heidelberg, 2004).10.1007/978-3-642-18855-8 · Zbl 1068.53001 · doi:10.1007/978-3-642-18855-8
[26] T.Gorin, T.Prosen, T. H.Seligman and M.Zdinaric, Dynamics of Loschmidt echoes and fidelity decay, Phys. Rep.435 (2006), 33-156.10.1016/j.physrep.2006.09.003 · doi:10.1016/j.physrep.2006.09.003
[27] A.Goussev, R. A.Jalabert, H. M.Pastawski and D.Wisniacki, Loschmidt Echo, Scholarpedia7(8) (2012), 11687. arXiv:1206.6348.10.4249/scholarpedia.11687 · doi:10.4249/scholarpedia.11687
[28] B.Hasselblatt, Horospheric foliations and relative pinching, J. Differential Geom.39 (1994), 57-63.10.4310/jdg/1214454676 · Zbl 0795.53026 · doi:10.4310/jdg/1214454676
[29] B.Helffer, A.Martinez and D.Robert, Ergodicité et limite semi-classique, Comm. Math. Phys.109 (1987), 313-326.10.1007/BF01215225 · Zbl 0624.58039 · doi:10.1007/BF01215225
[30] M.Hirsch and C.Pugh, Smoothness of horocycle foliations, J. Differential Geom.10 (1975), 225-238.10.4310/jdg/1214432791 · Zbl 0312.58008 · doi:10.4310/jdg/1214432791
[31] L.Hörmander, The Analysis of Linear Partial Differential Operators III (Springer, Berlin, New York, 1985). · Zbl 0601.35001
[32] P.Jacquod and C.Petitjean, Decoherence, Entanglement and Irreversibility in Quantum Dynamical Systems with Few Degrees of Freedom, Adv. Phys.58 (2009), 67-196.10.1080/00018730902831009 · doi:10.1080/00018730902831009
[33] P.Jacquod, P.Silvestrov and C.Beenakker, Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo, Phys. Rev. E64 (2001), 055203(R).10.1103/PhysRevE.64.055203 · doi:10.1103/PhysRevE.64.055203
[34] R. A.Jalabert and H. M.Pastawski, Environment-independent decoherence rate in classically chaotic systems, Phys. Rev. Lett.86 (2001), 2490.10.1103/PhysRevLett.86.2490 · doi:10.1103/PhysRevLett.86.2490
[35] A.Katok and B.Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of mathematics and its applications vol. 54, (Cambridge University Press, Cambridge, 1995).10.1017/CBO9780511809187 · Zbl 0878.58020 · doi:10.1017/CBO9780511809187
[36] A.Katok, G.Knieper, M.Pollicott and H.Weiss, Differentiability and analyticity of topological entropy for Anosov and Geodesic flows, Invent. Math.98 (1989), 581-597.10.1007/BF01393838 · Zbl 0702.58053 · doi:10.1007/BF01393838
[37] C.Liverani, On contact Anosov flows, Ann. of Math. (2)159 (2004), 1275-1312.10.4007/annals.2004.159.1275 · Zbl 1067.37031 · doi:10.4007/annals.2004.159.1275
[38] F.Macià and G.Rivière, Concentration and non-concentration for the Schrödinger evolution on Zoll manifolds, preprint, 2015, arXiv:1505.04945. · Zbl 1348.58017
[39] B.Marcus, Ergodic properties of horocycle flows for surfaces of negative curvature, Ann. of Math. (2)105 (1977), 81-105.10.2307/1971026 · Zbl 0322.28012 · doi:10.2307/1971026
[40] J.Moser, On a theorem of Anosov, Differ. Equ.5 (1969), 411-440.10.1016/0022-0396(69)90083-7 · Zbl 0169.42303 · doi:10.1016/0022-0396(69)90083-7
[41] S.Nonnenmacher, Anatomy of quantum chaotic eigenstates, Chaos, Prog. Math. Phys.66 (2013), 193-238.10.1007/978-3-0348-0697-8_6 · Zbl 1342.81155 · doi:10.1007/978-3-0348-0697-8_6
[42] R. S.Palais, Foundations of Global Non-linear Analysis (W.A. Benjamin Inc., 1968). · Zbl 0164.11102
[43] A.Peres, Stability of quantum motion in chaotic and regular systems, Phys. Rev. A30 (1984), 1610-1615.10.1103/PhysRevA.30.1610 · doi:10.1103/PhysRevA.30.1610
[44] G.Rivière, Long-time dynamics of the perturbed Schrödinger equation on negatively curved surfaces, preprint, 2014, arXiv:1412.4400.
[45] R. O.Ruggiero, Dynamics and global geometry of manifolds without conjugate points, Ensaios Mat.12 (2007); Soc. Bras. Mat. · Zbl 1133.37009
[46] P.Sarnak, Recent progress on the quantum unique ergodicity conjecture, Bull. Amer. Math. Soc. (N.S.)48 (2011), 211-228.10.1090/S0273-0979-2011-01323-4 · Zbl 1234.58007 · doi:10.1090/S0273-0979-2011-01323-4
[47] R.Schubert, Semiclassical behaviour of expectation values in time evolved Lagrangian states for large times, Comm. Math. Phys.256 (2005), 239-254.10.1007/s00220-005-1319-4 · Zbl 1067.81040 · doi:10.1007/s00220-005-1319-4
[48] A.Shnirelman, Ergodic properties of eigenfunctions, Uspekhi Mat. Nauk29 (1974), 181-182. · Zbl 0324.58020
[49] S.Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. (N.S.)73 (1967), 747-817.10.1090/S0002-9904-1967-11798-1 · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1
[50] J.Weber, J-holomorphic curves in cotangent bundles and the heat flow, PhD thesis/Dissertation, TU Berlin (1999). · Zbl 0954.53047
[51] S.Zelditch, Uniform distribution of the eigenfunctions on compact hyperbolic surfaces, Duke Math. J.55 (1987), 919-941.10.1215/S0012-7094-87-05546-3 · Zbl 0643.58029 · doi:10.1215/S0012-7094-87-05546-3
[52] S.Zelditch, Recent developments in mathematical quantum chaos, in Current Developments in Mathematics, pp. 115-204 (Int. Press, Somerville, MA, 2010). · Zbl 1223.37113
[53] M.Zworski, Semiclassical Analysis, Graduate Studies in Mathematics, Volume 138 (American Mathematical Society, Providence, RI., 2012).10.1090/gsm/138 · Zbl 1252.58001 · doi:10.1090/gsm/138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.