×

Uniform semiclassical estimates for the propagation of quantum observables. (English) Zbl 1069.35061

Summary: We prove here that the semiclassical asymptotic expansion for the propagation of quantum observables, for \(C^\infty\)-Hamiltonians growing at most quadratically at infinity, is uniformly dominated at any order by an exponential term whose argument is linear in time. In particular, we recover the Ehrenfest time for the validity of the semiclassical approximation. Furthermore, if the Hamiltonian and the initial observables are holomorphic in a complex neighborhood of the phase space, we prove that the quantum observable is an analytic semiclassical observable. Other results about the large time behavior of observables with emphasis on the classical dynamic are also given. In particular, precise Gevrey estimates are established for classically integrable systems.

MSC:

35Q40 PDEs in connection with quantum mechanics
35B40 Asymptotic behavior of solutions to PDEs
35C20 Asymptotic expansions of solutions to PDEs
35J10 Schrödinger operator, Schrödinger equation
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
Full Text: DOI

References:

[1] V. I. Arnold, Mathematical Methods of Classical Mechanics , Grad. Texts in Math. 60 , Springer, New York, 1978. · Zbl 0386.70001
[2] D. Bambusi, S. Graffi, and T. Paul, Long time semiclassical approximation of quantum flows: A proof of the Ehrenfest time , Asymptot. Anal. 21 (1999), 149–160. · Zbl 0934.35142
[3] R. Beals, “Propagation de singularités pour les opérateurs du type \(D_t^2 - \square_b\)” in Journées “Équations aux dérivées partielles” (Saint-Jean-de-Monts, France, 1980) , Soc. Math. France, Montrouge, 1980, conf. no. 19. · Zbl 0454.58018
[4] F. Bonechi and S. De Bièvre, Exponential mixing and \(|\ln\hbar|\) time scales in quantized hyperbolic maps on the torus , Comm. Math. Phys. 211 (2000), 659–686. · Zbl 1053.81032 · doi:10.1007/s002200050831
[5] A. Boulkhemair, \(L^2\) estimates for Weyl quantization , J. Funct. Anal. 165 (1999), 173–204. · Zbl 0934.35217 · doi:10.1006/jfan.1999.3423
[6] L. Boutet de Monvel and P. Krée, Pseudo-differential operators and Gevrey classes , Ann. Inst. Fourier (Grenoble) 17 (1967), 295–323. · Zbl 0195.14403 · doi:10.5802/aif.258
[7] L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations , 2d ed., Ergeb. Math. Grenzgeb. (2) 16 , Springer, Berlin, 1963. · Zbl 0111.08701
[8] B. V. Chirikov, A universal instability of many-dimensional oscillator systems , Phys. Rep. 52 (1979), 264–379. · doi:10.1016/0370-1573(79)90023-1
[9] M. Combescure and D. Robert, Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow , Asymptot. Anal. 14 (1997), 377–404. · Zbl 0894.35026
[10] L. Comtet, Analyse combinatoire, Vol. 1 , Collection SUP: “Le Mathématicien” 4 , Presses Univ. France, Paris, 1970.
[11] M. Dauge and D. Robert, “Weyl’s formula for a class of pseudodifferential operators with negative order on \(L^2(\mathbbR^n)\)” in Pseudodifferential Operators (Oberwolfach, Germany, 1986) , Lecture Notes in Math. 1256 , Springer, Berlin, 1987, 91–122. · Zbl 0629.35098
[12] S. De Bièvre and D. Robert, Semiclassical propagation and the \(\log(\hbar^-1)\) time-barrier , work in preparation.
[13] M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit , London Math. Soc. Lecture Note Ser. 268 , Cambridge Univ. Press, Cambridge, England, 1999. · Zbl 0926.35002
[14] Yu. V. Egorov, On canonical transformations of pseudodifferential operators (in Russian), Uspekhi Mat. Nauk 24 , no. 5 (1969), 235–236. · Zbl 0191.43802
[15] G. A. Hagedorn and A. Joye, Semiclassical dynamics with exponentially small error estimates , Comm. Math. Phys. 207 (1999), 439–465. · Zbl 1031.81519 · doi:10.1007/s002200050732
[16] B. Helffer, A. Martinez, and D. Robert, Ergodicité et limite semi-classique , Comm. Math. Phys. 109 (1987), 313–326. · Zbl 0624.58039 · doi:10.1007/BF01215225
[17] B. Helffer and D. Robert, Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles , J. Funct. Anal. 53 (1983), 246–268. · Zbl 0524.35103 · doi:10.1016/0022-1236(83)90034-4
[18] L. Hörmander, The Analysis of Linear Partial Differential Operators, I, II; III, IV , Grundlehren Math. Wiss. 256 , 257 ; 274 , 275 , Springer, Berlin, 1983; 1985., ;, Mathematical Reviews (MathSciNet): Mathematical Reviews (MathSciNet): MR87d:35002a Mathematical Reviews (MathSciNet): MR87d:35002b
[19] V. Ivrii, Microlocal Analysis and Precise Spectral Asymptotics , Springer Monogr. Math., Springer, Berlin, 1998. · Zbl 0906.35003
[20] T. Paul and A. Uribe, The semi-classical trace formula and propagation of wave packets , J. Funct. Anal. 132 (1995), 192–249. · Zbl 0837.35106 · doi:10.1006/jfan.1995.1105
[21] –. –. –. –., On the pointwise behavior of semi-classical measures , Comm. Math. Phys. 175 (1996), 229–258. · Zbl 0853.47038 · doi:10.1007/BF02102407
[22] D. Robert, Autour de l’approximation semi-classique , Progr. Math. 68 , Birkhäuser, Boston, 1987. · Zbl 0621.35001
[23] J. Sjöstrand, Singularités analytiques microlocales , Astérique 95 , Soc. Math. France, Montrouge, 1982.
[24] F. Trèves, Introduction to Pseudodifferential and Fourier Integral Operators, Vol. 2: Fourier Integral Operators , Univ. Ser. Math., Plenum, New York, 1980. · Zbl 0453.47027
[25] G. M. Zaslavsky, Stochasticity in quantum systems , Phys. Rep. 80 (1981), 157–250. · doi:10.1016/0370-1573(81)90127-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.