×

On nonlinear Schrödinger equations. II: \(H^ S\)-solutions and unconditional well-posedness. (English) Zbl 0848.35124

J. Anal. Math. 67, 281-306 (1995); correction ibid. 68, 305 (1996).
The author studies the initial value problem for the nonlinear Schrödinger equation \(\partial_t u= i(\Delta u- F(u))\), \(t\geq 0\), \(x\in \mathbb{R}^m\), under the assumption that \(F\in C^1(\mathbb{C}, \mathbb{C})\), \(F(0)= 0\), \(DF(\xi)= O(|\xi |^{k- 1})\) for some \(k\geq 1\) as \(|\xi |\to \infty\). The author proves uniqueness in \(L^\infty((0, T); L^2(\mathbb{R}^m))\cap L^r((0, T); L^q(\mathbb{R}^m))\), where \(r\) and \(q\) depend on \(m\) and \(k\). After this, a local existence theorem is proved for \(H^s\)-solutions using Lebesgue-type spaces instead of Besov-type spaces (used by T. Cazenaze and F. B. Weissler). Moreover, the existence of global \(H^s\)-solutions is shown under the assumption that \(F(\xi)= O^{\{s\}}(|\xi|^h)\) as \(|\xi|\to 0\), where \(h= 1+ 4/m\).
Reviewer: E.Minchev (Sofia)

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35G25 Initial value problems for nonlinear higher-order PDEs
Full Text: DOI

References:

[1] Bergh, J.; Löfström, J., Interpolation Spaces (1976), Berlin: Springer, Berlin · Zbl 0344.46071
[2] Brezis, H., Remarks on the preceding paper by M. Ben-Artzi “Global solutions of two-dimensional Navier-Stokes and Euler equations”, Arch. Rational Mech. Anal., 128, 359-360 (1994) · Zbl 0837.35112 · doi:10.1007/BF00387713
[3] Cazenave, T.; Weissler, F. B., The Cauchy problem for the critical nonlinear Schrödinger equation in H^S, Nonlinear Analysis, 14, 807-836 (1990) · Zbl 0706.35127 · doi:10.1016/0362-546X(90)90023-A
[4] Christ, F. M.; Weinstein, M. I., Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100, 87-109 (1991) · Zbl 0743.35067 · doi:10.1016/0022-1236(91)90103-C
[5] R. R. Coifman and Y. Meyer,Nonlinear harmonic analysis, operator theory and P.D.E., Beijing Lectures in Harmonic Analysis, Princeton, 1986, pp. 3-45. · Zbl 0623.47052
[6] Giga, Y.; Miyakawa, T.; Osada, H., Two-dimensional Navier-Stokes flow with measures as initial velocity, Arch. Rational Mech. Anal., 104, 223-250 (1988) · Zbl 0666.76052 · doi:10.1007/BF00281355
[7] Ginibre, J.; Velo, G., Théorie de la diffusion dans l’espace d’énergie pour une classe d’équations de Schrödinger non linéaires, C. R. Acad. Sci. Paris, 298, 137-141 (1984) · Zbl 0593.35078
[8] Ginibre, J.; Velo, G., The global Cauchy problem for the non linear Schrödinger equation revisited, Ann. Inst. Henri Poincaré, analyse non linéaire, 2, 309-327 (1985) · Zbl 0586.35042
[9] A. Gulisashvili and M. A. Kon,Smoothness of Schrödinger semigroups and eigenfunctions, International Math. Res. Notices (1994), 193-199. · Zbl 0834.47033
[10] Kato, T., Strong L^p solutions of the Navier-Stokes equation in ℝ^m, with applications to weak solutions, Math. Z., 187, 471-480 (1984) · Zbl 0545.35073 · doi:10.1007/BF01174182
[11] Kato, T., On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Phys. théor., 46, 113-129 (1987) · Zbl 0632.35038
[12] Kato, T., Nonlinear Schrödinger equations, 218-263 (1989), Berlin: Springer, Berlin · Zbl 0698.35131
[13] G. Staffilani,The initial value problem for some dispersive differential equations, Dissertation, University of Chicago, 1995.
[14] Tsutsumi, Y., L^2-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial Ekvac., 30, 115-125 (1987) · Zbl 0638.35021
[15] Tsutsumi, Y., Global strong solutions for nonlinear Schrödinger equations, Nonlinear Analysis, 11, 1143-1154 (1987) · Zbl 0657.35032 · doi:10.1016/0362-546X(87)90003-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.