×

The scaling limit of superreplication prices with small transaction costs in the multivariate case. (English) Zbl 1378.91132

Authors’ abstract: S. Kusuoka [Ann. Appl. Probab. 5, No. 1, 198–221 (1995; Zbl 0834.90049)] showed how to obtain non-trivial scaling limits of superreplication prices in discrete-time models of a single risky asset which is traded at properly scaled proportional transaction costs. This article extends the result to a multivariate setup where the investor can trade in several risky assets. The \(G\)-expectation describing the limiting price involves models with a volatility range around the frictionless scaling limit that depends not only on the transaction costs coefficients, but also on the chosen complete discrete-time reference model.

MSC:

91G99 Actuarial science and mathematical finance
91B25 Asset pricing models (MSC2010)
60H30 Applications of stochastic analysis (to PDEs, etc.)
60F05 Central limit and other weak theorems
60F17 Functional limit theorems; invariance principles
91G10 Portfolio theory
91G20 Derivative securities (option pricing, hedging, etc.)

Citations:

Zbl 0834.90049

References:

[1] Akahori, J.: A discrete Itô calculus approach to He’s framework for multi-factor discrete markets. Asia-Pac. Financ. Mark. 12, 273-287 (2005) · Zbl 1161.91381 · doi:10.1007/s10690-006-9026-5
[2] Bogachev, V.I.: Measure Theory, vol. II. Springer, Berlin (2007) · Zbl 1120.28001 · doi:10.1007/978-3-540-34514-5
[3] Blum, B.: The face-lifting theorem for proportional transaction costs in multiasset models. Stat. Decis. 27, 357-369 (2009) · Zbl 1201.91235
[4] Bouchard, B., Touzi, N.: Explicit solution of the multivariate super-replication problem under transaction costs. Ann. Appl. Probab. 10, 685-708 (2000) · Zbl 1083.91510
[5] Cvitanić, J., Pham, H., Touzi, N.: A closed-form solution to the problem of super-replication under transaction costs. Finance Stoch. 3, 35-54 (1999) · Zbl 0924.90010 · doi:10.1007/s007800050051
[6] Cox, J.C., Ross, A.R., Rubinstein, M.: Option pricing: a simplified approach. J. Financ. Econom. 7, 229-263 (1976) · Zbl 1131.91333 · doi:10.1016/0304-405X(79)90015-1
[7] Dudley, R.M.: Distances of probability measures and random variables. Ann. Math. Stat. 39, 1563-1572 (1968) · Zbl 0169.20602
[8] Davis, M.H.A., Clark, J.M.C.: A note on super-replicating strategies. Trans. R. Soc. Lond., Ser. A 347, 485-494 (1994) · Zbl 0822.90020 · doi:10.1098/rsta.1994.0058
[9] Dolinsky, Y., Nutz, M., Soner, H.M.: Weak approximations of G \(G\)-expectations. Stoch. Process. Appl. 2, 664-675 (2012) · Zbl 1259.60073 · doi:10.1016/j.spa.2011.09.009
[10] Duffie, D., Protter, P.: From discrete to continuous time finance: weak convergence of the financial gain process. Math. Finance 2, 1-15 (1992) · Zbl 0900.90046 · doi:10.1111/j.1467-9965.1992.tb00022.x
[11] Grépat, J.: On a multi-asset version of the Kusuoka limit theorem of option replication under transaction costs. Working paper, 2014. Available online at https://sites.google.com/site/juliengrepat/papers · Zbl 1318.91183
[12] Guasoni, P., Rásonyi, M., Schachermayer, W.: Consistent price systems and face-lifting pricing under transaction costs. Ann. Appl. Probab. 18, 491-520 (2008) · Zbl 1133.91422 · doi:10.1214/07-AAP461
[13] He, H.: Convergence from discrete to continuous time contingent claim prices. Rev. Financ. Stud. 3, 523-546 (1990) · doi:10.1093/rfs/3.4.523
[14] Jouini, E., Kallal, H.: Martingales and arbitrage in securities markets with transaction costs. J. Econ. Theory 66, 178-197 (1995) · Zbl 0830.90020 · doi:10.1006/jeth.1995.1037
[15] Jakubėnas, P., Levental, S., Ryznar, M.: The super-replication problem via probabilistic methods. Ann. Appl. Probab. 13, 742-773 (2003) · Zbl 1029.60052 · doi:10.1214/aoap/1050689602
[16] Kusuoka, S.: Limit theorem on option replication cost with transaction costs. Ann. Appl. Probab. 5, 198-221 (1995) · Zbl 0834.90049 · doi:10.1214/aoap/1177004836
[17] Luenberger, D.G.: Products of trees for investment analysis. J. Econ. Dyn. Control 22, 1403-1417 (1998) · Zbl 0912.90027 · doi:10.1016/S0165-1889(98)00018-9
[18] Levental, S., Skorohod, A.V.: On the possibility of hedging options in the presence of transaction costs. Ann. Appl. Probab. 7, 410-443 (1997) · Zbl 0883.90018 · doi:10.1214/aoap/1034625338
[19] Peng, S.; Benth, F. E. (ed.); etal., G \(G\)-expectation, G \(G\)-Brownian motion and related stochastic calculus of Itô type, No. 2, 541-567 (2007), Berlin · Zbl 1131.60057 · doi:10.1007/978-3-540-70847-6_25
[20] Peng, S.: Multi-dimensional G \(G\)-Brownian motion and related stochastic calculus under G \(G\)-expectation. Stoch. Process. Appl. 12, 2223-2253 (2008) · Zbl 1158.60023 · doi:10.1016/j.spa.2007.10.015
[21] Romagnoli, S., Vargiolu, T.: Robustness of the Black-Scholes approach in the case of options on several assets. Finance Stoch. 4, 325-341 (2000) · Zbl 0957.35063 · doi:10.1007/s007800050076
[22] Soner, H.M., Shreve, S.E., Cvitanić, J.: There is no nontrivial hedging portfolio for option pricing with transaction costs. Ann. Appl. Probab. 5, 327-355 (1995) · Zbl 0837.90012 · doi:10.1214/aoap/1177004767
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.