×

Pfaff systems, currents and hulls. (English) Zbl 1378.32023

In the first part of the article, the author shows the following. Let \(M\) be a compact complex Hermitian manifold of dimension \(k\). Let \((\alpha_1,\ldots,\alpha_{k-1})\) be continuous \((1,0)\)-forms on \(M\) (a Pfaff system). Then there exists a positive current \(T\) on \(M\) of mass 1 and bidimension \((1,1)\) such that \(T\wedge\alpha_j=0\) for all \(j=1,\ldots,k-1\) and \(\partial\bar\partial T=0\), without any integrability assumption on the \(\alpha_j\).
In the second part of the article, the author studies the pluripotential theory of functions in a cone \(\mathcal{P}_{\Gamma}\). Informally, this is the class of smooth functions in \(\mathbb{C}^k\) for which subharmonicity is prescribed only in certain directions (given by \(\Gamma\)). One can define the hull of a compact set \(K\), \[ \hat K_{\Gamma} := \Bigl\{ z\in\mathbb{C}^k: u(z)\leq \sup_K u \text{ for every }u\in\mathcal{P}_{\Gamma} \bigr\}, \] as well as the class of positive \(\Gamma\)-directed currents of bidimension \((1,1)\), \[ \mathcal{P}_{\Gamma}^0:= \{T\geq 0, \text{ of bidimension } (1,1), T\wedge i\partial\bar\partial u\geq 0 \text{ for every } u\in\mathcal{P}_{\Gamma} \}. \] The above notions, as well as Jensen measures (which are an important tool), enter into most of the main results. These include the characterization of a Perron-Bremmerman type upper envelope of functions in \(\mathcal{P}_{\Gamma}\) in terms of an asymptotic notion of harmonicity. The problem of extending positive \(\Gamma\)-directed currents through ‘small’ sets is also covered; to this end, the notion of \(\mathcal{P}_{\Gamma}\)-pluripolar sets is required.

MSC:

32U40 Currents
32U15 General pluripotential theory
32U05 Plurisubharmonic functions and generalizations

References:

[1] Bedford, B., Taylor, B.: The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math. 37, 1-44 (1976) · Zbl 0315.31007 · doi:10.1007/BF01418826
[2] Berndtsson, B., Sibony, N.: The \[{\bar{\partial }} \]∂¯-equation on a positive current. Invent. Math. 147(2), 371-428 (2002) · Zbl 1031.32005 · doi:10.1007/s002220100178
[3] Bryant, R., et al.: Exterior Differential Systems. Springer, Berlin (1991) · Zbl 0726.58002 · doi:10.1007/978-1-4613-9714-4
[4] Bu, S.Q., Schachermayer, W.: Approximation of Jensen measures by image measures under holomorphic functions and applications. Trans. Am. Math. Soc. 331, 585-608 (1992) · Zbl 0758.46014 · doi:10.1090/S0002-9947-1992-1035999-6
[5] Chern, S.S., Levine, H.I., and Nirenberg, L.: Intrinsic norms on a complex manifold. In: Global Analysis (Papers in Honor of K. Kodaira), pp. 119-139. University Tokyo Press (1969) · Zbl 0202.11603
[6] Choquet, G., Meyer, A.: Existence et unicité des représentation intégrales dans les convexes compacts quelconques. Ann. Inst. Fourier 13, 139-154 (1963) · Zbl 0122.34602 · doi:10.5802/aif.135
[7] Demailly, J.-P. Complex analytic geometry. http://www.fourier.ujf-grenoble.fr/ demailly · Zbl 1195.01062
[8] Dinh, T.-C., Nguyên, V.-A., Sibony, N.: Heat equation and ergodic theorems for Riemann surface laminations. Math. Ann. 354(1), 331-376 (2012) · Zbl 1331.37064 · doi:10.1007/s00208-011-0730-8
[9] Dinh, T.-C., Lawrence, M.G.: Polynomial hulls and positive currents. Ann. Fac. Sci. Toulouse Math. (6) 12(3), 317-334 (2003) · Zbl 1065.32004 · doi:10.5802/afst.1051
[10] Dinh, T.-C., Sibony, N.: Pull-back currents by holomorphic maps. Manuscr. Math. 123(3), 357-371 (2007) · Zbl 1128.32020 · doi:10.1007/s00229-007-0103-5
[11] Dinh, T.-C., Sibony, N.: Rigidity of Julia sets for Hénon type maps. J. Mod. Dyn. 8(3-4), 499-548 (2014) · Zbl 1370.37090
[12] Drinovec-Drnovesk, B; Forstneric, F.: Minimal hulls of compact sets in \[{\mathbb{R}}^3\] R3. arXiv:1409.6906 · Zbl 1339.53004
[13] Duval, J., Sibony, N.: Polynomial convexity, rational convexity, and currents. Duke Math. J. 79, 487-513 (1995) · Zbl 0838.32006 · doi:10.1215/S0012-7094-95-07912-5
[14] Edwards, DA; Birtel, F. (ed.), Choquet boundary theory of certain spaces of lower semicontinuous functions, 300-309 (1966), London · Zbl 0145.38601
[15] El Mir, H.: Sur le prolongement des courants positifs fermés. Acta Math. 153(1-2), 1-45 (1984) · Zbl 0557.32003 · doi:10.1007/BF02392374
[16] Fornæss, J.E., Sibony, N.: Complex Hénon Mappings in \[{\mathbb{C}}^2\] C2 and Fatou-Bieberbach domains. Duke Math. J. 65(2), 345-380 (1992) · Zbl 0761.32015 · doi:10.1215/S0012-7094-92-06515-X
[17] Fornæss, J.-E., Sibony, N.: Harmonic currents of finite energy and laminations. Geom. Funct. Anal. 15(5), 962-1003 (2005) · Zbl 1115.32020 · doi:10.1007/s00039-005-0531-x
[18] Fornæss, J.E., Sibony, N.: Oka’s inequality for currents and applications. Math. Ann. 301(3), 399-419 (1995) · Zbl 0832.32010
[19] Gamelin, T.W.: Uniform algebras and Jensen measures. London Math. Soc. Lecture notes series 32 (1978) · Zbl 0418.46042
[20] Gamelin, T.W., Sibony, N.: Subharmonicity for uniform algebras. J. Funct. Anal. 35, 64-108 (1980) · Zbl 0422.46043 · doi:10.1016/0022-1236(80)90081-6
[21] Harvey, R., Lawson, B.: Duality of positive currents and plurisubharmonic functions in calibrated geometry. Am. J. Math. 131, 1211-1239 (2009) · Zbl 1179.53058 · doi:10.1353/ajm.0.0074
[22] Hörmander, L.: An Introduction to Complex Analysis in Several Variables, 3rd edn. North Holland, Amsterdam (1988) · Zbl 0138.06203
[23] Poletsky, E.: Holomorphic currents. Indiana Univ. Math. J. 42, 85-144 (1993) · Zbl 0811.32010 · doi:10.1512/iumj.1993.42.42006
[24] Ross, J., Nyström, D.W.: Harmonic discs of solutions to the complex Monge-Ampère equation. arXiv:1408.6663 · Zbl 1333.32041
[25] Rossi, R.: The local maximum principle. Ann. Math. 72, 1-11 (1960) · Zbl 0099.32703 · doi:10.2307/1970145
[26] Sibony, N.: Quelques problèmes de prolongement de courants en analyse complexe. Duke Math. J. 52(1), 157-197 (1985) · Zbl 0578.32023 · doi:10.1215/S0012-7094-85-05210-X
[27] Skoda, H.: Prolongement des courants positifs, fermés de masse finie. Invent. Math. 66, 361-376 (1982) · Zbl 0488.58002 · doi:10.1007/BF01389217
[28] Sullivan, D.: Cycles for the dynamical study of foliated manifolds in complex manifolds. Invent. Math. 36, 225-255 (1975) · Zbl 0335.57015 · doi:10.1007/BF01390011
[29] Wold, E.: A note on polynomial convexity: Poletsky disks, Jensen measures and positive currents. J. Geom. Anal. 21, 252-255 (2011) · Zbl 1226.32006 · doi:10.1007/s12220-010-9130-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.