×

Polynomial convexity, rational convexity, and currents. (English) Zbl 0838.32006

Dans les énoncés suivants, extraits de l’article, \(X\) est toujours un compact de \(\mathbb{C}^k\), \(S\) une variété compacte totalement réelle dans \(\mathbb{C}^k\).
(1) Soit \(\varphi\) une fonction p.s.h. sur un domain pseudoconvexe \(\Omega\), telle que \(\Omega \backslash \text{Supp} (dd^c \varphi)\) soit relativement compact dans \(\Omega\); alors, \(\forall s > 0\), le compact \(K_s = \{z \in \Omega : \text{dist} [z, \text{Supp} (dd^c \varphi)] \geq s\}\) est méromorphiquement convexe dans \(\Omega\), i.e. \(\Omega \backslash K_s\) réunion des ensembles de zéros des fonctions holomorphes sur \(\Omega\) qui ne s’annullent pas sur \(K_s\).
(2) L’enveloppe rationnelle \(r(X)\), définie par \(\mathbb{C}^k \backslash r(X)\) réunion des ensembles de zéros des polynomes en \(z_1, \dots, z_k\) qui ne s’annullent pas sur \(X\), peut aussi être caractérisée comme suit à l’aide de supports de courants positifs fermés de bidegré (1,1): si le support d’un tel courant est disjoint à \(X\), il est aussi disjoint à \(r(X)\); réciproquement, \(\forall x \notin r(X)\) il existe une (1,1)-forme positive fermée, de classe \({\mathcal C}^\infty\), strictement positive en \(x\) et nulle sur un voisinage de \(r(X)\).
(3) Si \(H^1 (X, \mathbb{Z}) = 0\) et si \(T\) est un courant positif, de bidegré \((k - 1, k - 1)\), à support compact: \(\text{Supp} (dT) \subset X\) entraîne \(\text{Supp} T \subset r (X)\).
(4) \(S\) est rationnellement convexe, i.e. \(S = r(S)\), si et seulement s’il existe \(\varphi \in {\mathcal C}^\infty (\mathbb{C}^k) \), strictement p.s.h., telle que \(j^* dd^c \varphi = 0\) \((j\) étant l’injection \(S \to \mathbb{C}^k)\), résultat obtenu auparavant par le \(1^{\text{er}}\) auteur [Acta Math. 172, No. 1, 77-89 (1994; Zbl 0810.32008)] dans le cas \(\dim S = 2\).
(5) \(x \in \widehat X\) si et seulement s’il existe un courant positif \(T\), be bidegré \((k - 1, k - 1)\), à support compact, tel que \(dd^c T = \mu - \delta_x\), où \(\mu\) est une mesure positive de masse 1 sur \(X\).
(6) \(\widehat S \neq S\) si et seulement s’il existe un courant positif \(T\), de bidegré \((k - 1, k - 1)\), à support compact non contenu dans \(S\), tel que \(\text{Supp} (dd^cT) \subset S\).
Reviewer: M.Hervé (Paris)

MSC:

32E20 Polynomial convexity, rational convexity, meromorphic convexity in several complex variables
32C30 Integration on analytic sets and spaces, currents

Citations:

Zbl 0810.32008
Full Text: DOI

References:

[1] H. Alexander, On the totally real spheres of Ahern and Rudin and Weinstein , The Madison Symposium on Complex Analysis (Madison, WI, 1991), Contemporary Math., vol. 137, Amer. Math. Soc., Providence, 1992, pp. 29-35. · Zbl 0772.32015
[2] E. Bishop, Holomorphic completions, analytic continuation, and the interpolation of semi norms , Ann. of Math. (2) 78 (1963), 468-500. JSTOR: · Zbl 0131.30901 · doi:10.2307/1970537
[3] U. Cegrell, Removable singularities for p.s.h. functions and related problems , Proc. London Math. Soc. (3) 36 (1978), no. 2, 310-336. · Zbl 0375.32013 · doi:10.1112/plms/s3-36.2.310
[4] J.-P. Demailly, Courants positifs extrêmaux et conjecture de Hodge , Invent. Math. 69 (1982), no. 3, 347-374. · Zbl 0488.58001 · doi:10.1007/BF01389359
[5] J. Duval, Convexité rationnelle des surfaces lagrangiennes , Invent. Math. 104 (1991), no. 3, 581-599. · Zbl 0699.32008 · doi:10.1007/BF01245091
[6] J. Duval, Une caractérisation kählérienne des surfaces rationnellement convexes , Acta Math. 172 (1994), no. 1, 77-89. · Zbl 0810.32008 · doi:10.1007/BF02392791
[7] J. E. Fornæss and N. Sibony, Complex dynamics in higher dimensions, II , · Zbl 0811.32019
[8] R. C. Gunning, Introduction to Holomorphic Functions of Several Variables. Vol I , The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth and Brooks/Cole, Pacific Grove, CA, 1990. · Zbl 0699.32001
[9] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds , Invent. Math. 82 (1985), no. 2, 307-347. · Zbl 0592.53025 · doi:10.1007/BF01388806
[10] R. Harvey, Holomorphic chains and their boundaries , Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975), Amer. Math. Soc., Providence, R. I., 1977, pp. 309-382. · Zbl 0374.32002
[11] R. Harvey and R. O. Wells, Zero sets of nonnegative strictly plurisubharmonic functions , Math. Ann. 201 (1973), 165-170. · Zbl 0253.32009 · doi:10.1007/BF01359794
[12] L. Hörmander, An Introduction to Complex Analysis in Several Variables , 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland, Amsterdam, 1990. · Zbl 0685.32001
[13] L. Hörmander, \(L^2\) estimates and existence theorems for the \(\bar \partial\) operator , Acta Math. 113 (1965), 89-152. · Zbl 0158.11002 · doi:10.1007/BF02391775
[14] L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. II , Grundlehren Math. Wiss., vol. 257, Springer-Verlag, Berlin, 1983. · Zbl 0521.35002
[15] L. Hörmander and J. Wermer, Uniform approximation on compact sets in \(\mathbbC^n\) , Math. Scand. 23 (1968), 5-21. · Zbl 0181.36201
[16] P. Lelong, Fonctions plurisousharmoniques et formes différentielles positives , Gordon & Breach, Paris, 1968. · Zbl 0195.11603
[17] H. Rossi, The local maximum modulus principle , Ann. of Math. (2) 72 (1960), 1-11. · Zbl 0099.32703 · doi:10.2307/1970145
[18] N. Sibony, Prolongement des fonctions holomorphes bornées et métrique de Carathéodory , Invent. Math. 29 (1975), no. 3, 205-230. · Zbl 0333.32011 · doi:10.1007/BF01389850
[19] Y. T. Siu, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents , Invent. Math. 27 (1974), 53-156. · Zbl 0289.32003 · doi:10.1007/BF01389965
[20] G. Stolzenberg, Polynomially and rationally convex sets , Acta Math. 109 (1963), 259-289. · Zbl 0122.08404 · doi:10.1007/BF02391815
[21] G. Stolzenberg, The analytic part of the Runge hull , Math. Ann. 164 (1966), 286-290. · Zbl 0141.27303 · doi:10.1007/BF01360253
[22] D. Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds , Invent. Math. 36 (1976), 225-255. · Zbl 0335.57015 · doi:10.1007/BF01390011
[23] Lectures on symplectic manifolds , CBMS Regional Conf. Ser. in Math., vol. 291, American Mathematical Society, Providence, R.I., 1977. · Zbl 0406.53031
[24] J. Wermer, Polynomially convex hulls and analyticity , Ark. Mat. 20 (1982), no. 1, 129-135. · Zbl 0491.32013 · doi:10.1007/BF02390504
[25] J. Wermer, Banach Algebras and Several Complex Variables , 2nd ed., Graduate Texts in Math., vol. 35, Springer-Verlag, New York, 1976. · Zbl 0336.46055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.