×

Generalized gradients and characterization of epi-Lipschitz sets in Riemannian manifolds. (English) Zbl 1225.49046

Summary: In this paper, a notion of generalized gradient on Riemannian manifolds is considered and a subdifferential calculus related to this subdifferential is presented. A characterization of the tangent cone to a nonempty subset \(S\) of a Riemannian manifold \(M\) at a point \(x\) is obtained. Then, these results are applied to characterize epi-Lipschitz subsets of complete Riemannian manifolds.

MSC:

49Q20 Variational problems in a geometric measure-theoretic setting
49J52 Nonsmooth analysis
Full Text: DOI

References:

[1] Chryssochoos, I.; Vinter, R. B., Optimal control problems on manifolds: a dynamic programming approach, J. Math. Anal. Appl., 287, 118-140 (2003) · Zbl 1029.49025
[2] Ledyaev, Yu. S.; Zhu, Q. J., Nonsmooth analysis on smooth manifolds, Trans. Amer. Math. Soc., 359, 3687-3732 (2007) · Zbl 1157.49021
[3] Azagra, D.; Ferrera, J.; López-Mesas, F., Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds, J. Funct. Anal., 220, 304-361 (2005) · Zbl 1067.49010
[4] Azagra, D.; Ferrera, J., Applications of proximal calculus to fixed point theory on Riemannian manifolds, Nonlinear Anal., 67, 154-174 (2007) · Zbl 1131.58006
[5] Barani, A.; Pouryayevali, M. R., Invariant monotone vector fields on Riemannian manifolds, Nonlinear Anal., 70, 1850-1861 (2008) · Zbl 1170.53018
[6] Borwein, J. M.; Zhu, Q. J., Techniques of Variational Analysis (2005), Springer: Springer New York · Zbl 1076.49001
[7] Ferreira, O. P., Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds, J. Math. Anal. Appl., 313, 587-597 (2006) · Zbl 1089.58005
[8] Clarke, F. H.; Ledyaev, Yu. S.; Stern, R. J.; Wolenski, P. R., (Nonsmooth Analysis and Control Theory. Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, vol. 178 (1998), Springer: Springer New York) · Zbl 1047.49500
[9] Mordukhovich, B. S., (Variational Analysis and Generalized Differentiation, I: Basic Theory. Variational Analysis and Generalized Differentiation, I: Basic Theory, Grundlehren Series, vol. 331 (2006), Springer) · Zbl 1100.49002
[10] Azagra, D.; Ferrera, J., Proximal calculus on Riemannian manifolds, Mediterr. J. Math., 2, 437-450 (2005) · Zbl 1167.49307
[11] Motreanu, D.; Pavel, N. H., Quasitangent vectors in flow-invariance and optimization problems on Banach manifolds, J. Math. Anal. Appl., 88, 116-132 (1982) · Zbl 0504.58037
[12] Thämelt, W., Directional derivatives and generalized gradients on manifolds, Optimization, 25, 97-115 (1992) · Zbl 0814.49014
[13] Rockafellar, R. T., Clarke’s tangent cones and the boundaries of closed sets in \(R^n\), Nonlinear Anal., 3, 145-154 (1979) · Zbl 0443.26010
[14] Cornet, B.; Czarnecki, M. O., Smooth representations of epi-Lipschitzian subsets of \(R^n\), Nonlinear Anal., 37, 139-160 (1999) · Zbl 0952.49013
[15] B. Cornet, M.O. Czarnecki, Necessary and sufficient conditions for existence of (generalized) equilibria on a compact epi-Lipschitzian domain, Cahier Eco-Maths no. 95-55, Université de Paris 1, 1995.; B. Cornet, M.O. Czarnecki, Necessary and sufficient conditions for existence of (generalized) equilibria on a compact epi-Lipschitzian domain, Cahier Eco-Maths no. 95-55, Université de Paris 1, 1995.
[16] Czarnecki, M. O.; Rifford, L., Approximation and regularization of Lipschitz functions; convergence of the gradients, Trans. Amer. Math. Soc., 358, 4467-4520 (2006) · Zbl 1091.49015
[17] do Carmo, M. P., Riemannian Geometry (1992), Birkhäuser: Birkhäuser Boston · Zbl 0752.53001
[18] Klingenberg, W., (Riemannian Geometry. Riemannian Geometry, Walter de Gruyter Studies in Mathematics, vol. 1 (1982), Walter de Gruyter: Walter de Gruyter Berlin, New York) · Zbl 0495.53036
[19] Lang, S., (Fundamentals of Differential Geometry. Fundamentals of Differential Geometry, Graduate Texts in Mathematics, vol. 191 (1999), Springer: Springer New York) · Zbl 0932.53001
[20] Ferreira, O. P., Dini derivative and a characterization for Lipschitz and convex functions on Riemannian manifolds, Nonlinear Anal., 68, 1517-1528 (2008) · Zbl 1140.49012
[21] Aubin, J.-P., (Optima and Equilibria. An Introduction to Nonlinear Analysis. Optima and Equilibria. An Introduction to Nonlinear Analysis, Graduate Texts in Mathematics (1998), Springer) · Zbl 0930.91001
[22] Clarke, F. H., Optimization and Nonsmooth Analysis (1983), Wiley: Wiley New York · Zbl 0727.90045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.