×

Stability of the determination of a coefficient for wave equations in an infinite waveguide. (English) Zbl 1432.35256

Summary: We consider the stability of the inverse problem consisting of the determination of a coefficient of order zero \(q\), appearing in the Dirichlet initial-boundary value problem for a wave equation \(\partial_t^2u-\Delta u+q(x)u=0\) in \((0,T)\times\Omega\), with \(\Omega=\omega\times\mathbb{R}\) an unbounded cylindrical waveguide and \(\omega\) a bounded smooth domain of \(\mathbb{R}^2\), from boundary observations. The observation is given by the Dirichlet to Neumann map associated to the wave equation. Using suitable geometric optics solutions, we prove a Hölder stability estimate in the determination of \(q\) from the Dirichlet to Neumann map. Moreover, provided that the coefficient \(q\) is lying in a set of functions \(\mathcal A\), where, for any \(q_1,q_2\in\mathcal A\), \(|q_1-q_2|\) attains its maximum in a fixed bounded subset of \(\overline{\Omega}\), we extend this result to the same inverse problem with measurements on a bounded subset of the lateral boundary \((0,T)\times\partial\Omega\).

MSC:

35R30 Inverse problems for PDEs
35B35 Stability in context of PDEs
35L20 Initial-boundary value problems for second-order hyperbolic equations

References:

[1] M. Bellassoued, Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients,, Appl. Anal., 83, 983 (2004) · Zbl 1069.35035 · doi:10.1080/0003681042000221678
[2] M. Bellassoued, Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem,, J. Diff. Equat., 247, 465 (2009) · Zbl 1171.35123 · doi:10.1016/j.jde.2009.03.024
[3] M. Bellassoued, Lipschitz stability for a hyperbolic inverse problem by finite local boundary data,, Appl. Anal., 85, 1219 (2006) · Zbl 1110.35098 · doi:10.1080/00036810600787873
[4] M. Bellassoued, Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map,, J. Math. Anal. Appl, 343, 1036 (2008) · Zbl 1148.35044 · doi:10.1016/j.jmaa.2008.01.098
[5] A. L. Bukhgeim, Global uniqueness of class of multidimensional inverse problems,, Sov. Math. Dokl., 24, 244 (1981) · Zbl 0497.35082
[6] M. Choulli, <em>Une Introduction Aux Problèmes Inverses Elliptiques et Paraboliques</em>,, Mathématiques et Applications (2009) · Zbl 1192.35187
[7] M. Choulli, Some inverse anisotropic conductivity problem induced by twisting a homogeneous cylindrical domain,, preprint · Zbl 1321.35258
[8] G. Eskin, A new approach to hyperbolic inverse problems,, Inverse Problems, 22, 815 (2006) · Zbl 1099.35170 · doi:10.1088/0266-5611/22/3/005
[9] G. Eskin, Inverse hyperbolic problems with time-dependent coefficients,, Comm. PDE, 32, 1737 (2007) · Zbl 1153.35081 · doi:10.1080/03605300701382340
[10] G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect,, J. Math. Phys., 49, 1 (2008) · Zbl 1153.81355 · doi:10.1063/1.2841329
[11] C. Hamaker, The divergent beam x-ray transform,, Rocky Mountain J. Math., 10, 253 (1980) · Zbl 0443.44005 · doi:10.1216/RMJ-1980-10-1-253
[12] M. Ikehata, Inverse conductivity problem in the infinite slab,, Inverse Problems, 17, 437 (2001) · Zbl 0980.35174 · doi:10.1088/0266-5611/17/3/305
[13] O. Yu. Imanuvilov, Global uniqueness and stability in determining coefficients of wave equations,, Comm. PDE, 26, 1409 (2001) · Zbl 0985.35108 · doi:10.1081/PDE-100106139
[14] V. Isakov, An inverse hyperbolic problem with many boundary measurements,, Comm. PDE, 16, 1183 (1991) · Zbl 0739.35105 · doi:10.1080/03605309108820794
[15] V. Isakov, Stability estimates for hyperbolic inverse problems with local boundary data,, Inverse Problems, 8, 193 (1992) · Zbl 0754.35184 · doi:10.1088/0266-5611/8/2/003
[16] M. V. Klibanov, Inverse problems and Carleman estimates,, Inverse Problems, 8, 575 (1992) · Zbl 0755.35151 · doi:10.1088/0266-5611/8/4/009
[17] K. Krupchyk, Inverse Problems With Partial Data for a Magnetic Schrödinger Operator in an Infinite Slab and on a Bounded Domain,, Communications in Mathematical Physics, 312, 87 (2012) · Zbl 1238.35188 · doi:10.1007/s00220-012-1431-1
[18] I. Lasiecka, Non homogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl., 65, 149 (1986) · Zbl 0631.35051
[19] X. Li, Inverse problems with partial data in a slab,, Inverse Probl. Imaging, 4, 449 (2010) · Zbl 1200.35331 · doi:10.3934/ipi.2010.4.449
[20] J-L. Lions, <em>Problèmes Aux Limites Non Homogènes et Applications</em>,, Vol. I (1968) · Zbl 0165.10801
[21] J-L. Lions, <em>Problèmes Aux Limites Non Homogènes et Applications</em>,, Vol. II (1968) · Zbl 0165.10801
[22] S-I. Nakamura, Uniqueness for an Inverse Problem for the Wave Equation in the Half Space,, Tokyo J. of Math., 19, 187 (1996) · Zbl 0867.35114 · doi:10.3836/tjm/1270043228
[23] F. Natterer, <em>The Mathematics of Computarized Tomography</em>,, John Wiley & Sons (1986) · Zbl 0617.92001
[24] Rakesh, Reconstruction for an inverse problem for the wave equation with constant velocity,, Inverse Problems, 6, 91 (1990) · Zbl 0712.35104 · doi:10.1088/0266-5611/6/1/009
[25] Rakesh, An inverse problem for the wave equation in the half plane,, Inverse Problems, 9, 433 (1993) · Zbl 0785.35112 · doi:10.1088/0266-5611/9/3/005
[26] Rakesh, Uniqueness for an inverse problem for the wave equation,, Comm. PDE, 13, 87 (1988) · Zbl 0667.35071 · doi:10.1080/03605308808820539
[27] A. Ramm, An inverse problem of the wave equation,, Math. Z., 206, 119 (1991) · Zbl 0697.35164 · doi:10.1007/BF02571330
[28] M. Salo, Complex spherical waves and inverse problems in unbounded domains,, Inverse Problems, 22, 2299 (2006) · Zbl 1106.35140 · doi:10.1088/0266-5611/22/6/023
[29] P. Stefanov, Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media,, J. Funct. Anal., 154, 330 (1998) · Zbl 0915.35066 · doi:10.1006/jfan.1997.3188
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.