×

Computing integral points on hyperelliptic curves using quadratic Chabauty. (English) Zbl 1376.11053

The paper under review deals with the problem of computing all integer solutions \((x, y)\) to the hyperelliptic equation \(y^2 = f(x)\), where \(f(x)\) is a separable polynomial of degree at least 3 with integer coefficients. R. F. Coleman’s interpretation [Duke Math. J. 52, 765–770 (1985; Zbl 0588.14015)] of the method of Chabauty, allowing one to determine the rational points on a curve whose Jacobian has Mordell-Weil rank less than its genus. Over the last decade, M. Kim [Invent. Math. 161, No. 3, 629–656 (2005; Zbl 1090.14006)] has initiated a program aimed at removing this restricting on rank, allowing the study of rational points on hyperbolic curves through the use of nonabelian geometric objects generalizing the role of the Jacobian in the Chabauty-Coleman method. In this frame, the authors gave a method which they call quadratic Chabauty [J. Reine Angew. Math. 720, 51–79 (2016; Zbl 1350.11067)] based on \(p\)-adic height pairings to \(p\)-adically approximate the set of integer solutions of equation \(y^2 = f(x)\) in the case when the Jacobian of the corresponding algebraic curve has Mordell-Weil rank equal to its genus.
In this paper, a full algorithm is presented for the computation in practice of all integer solutions of hyperelliptic equation \(y^2 = f(x)\). It combines the quadratic Chabauty method with the Mordell-Weil sieve. All the necessary computations are described and an analysis of the \(p\)-adic precision which must be maintained throughout the computation is provided. A few examples are given.

MSC:

11G30 Curves of arbitrary genus or genus \(\ne 1\) over global fields
11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)
11Y50 Computer solution of Diophantine equations
14G40 Arithmetic varieties and schemes; Arakelov theory; heights

Software:

SageMath; Magma

References:

[1] Baker, Matthew H.; Gonz{\'a}lez-Jim{\'e}nez, Enrique; Gonz{\'a}lez, Josep; Poonen, Bjorn, Finiteness results for modular curves of genus at least 2, Amer. J. Math., 127, 6, 1325-1387 (2005) · Zbl 1127.11041
[2] Balakrishnan, Jennifer S., Iterated Coleman integration for hyperelliptic curves. ANTS X-Proceedings of the Tenth Algorithmic Number Theory Symposium, Open Book Ser. 1, 41-61 (2013), Math. Sci. Publ., Berkeley, CA · Zbl 1344.11076 · doi:10.2140/obs.2013.1.41
[3] Balakrishnan, Jennifer S.; Besser, Amnon, Computing local \(p\)-adic height pairings on hyperelliptic curves, Int. Math. Res. Not. IMRN, 11, 2405-2444 (2012) · Zbl 1284.11097 · doi:10.1093/imrn/rnr111
[4] Balakrishnan, Jennifer S.; Besser, Amnon, Coleman-Gross height pairings and the \(p\)-adic sigma function, J. Reine Angew. Math., 698, 89-104 (2015) · Zbl 1348.11091 · doi:10.1515/crelle-2012-0095
[5] BBM14 J. S. Balakrishnan, A. Besser, and J. S. M\"uller, Quadratic Chabauty: \(p\)-adic heights and integral points on hyperelliptic curves, J. Reine Angew. Math (2015), to appear. · Zbl 1350.11067
[6] Balakrishnan, Jennifer S.; Bradshaw, Robert W.; Kedlaya, Kiran S., Explicit Coleman integration for hyperelliptic curves. Algorithmic Number Theory, Lecture Notes in Comput. Sci. 6197, 16-31 (2010), Springer, Berlin · Zbl 1261.14011 · doi:10.1007/978-3-642-14518-6\_6
[7] bdckw J. S. Balakrishnan, I. Dan-Cohen, M. Kim, and S. Wewers, A non-abelian conjecture of Birch and Swinnerton-Dyer type for hyperbolic curves, preprint (2014), arXiv:1209.0640.
[8] Balakrishnan, Jennifer S.; Kedlaya, Kiran S.; Kim, Minhyong, Appendix and erratum to “Massey products for elliptic curves of rank 1” [MR2629986], J. Amer. Math. Soc., 24, 1, 281-291 (2011) · Zbl 1285.11082 · doi:10.1090/S0894-0347-2010-00675-3
[9] Balakrishnan, Jennifer S.; M{\"u}ller, J. Steffen; Stein, William A., A \(p\)-adic analogue of the conjecture of Birch and Swinnerton-Dyer for modular abelian varieties, Math. Comp., 85, 298, 983-1016 (2016) · Zbl 1402.11099 · doi:10.1090/mcom/3029
[10] Besser, Amnon, \(p\)-adic Arakelov theory, J. Number Theory, 111, 2, 318-371 (2005) · Zbl 1079.14033 · doi:10.1016/j.jnt.2004.11.010
[11] Bosma, Wieb; Cannon, John; Playoust, Catherine, The Magma algebra system. I. The user language, J. Symbolic Comput., 24, 3-4, 235-265 (1997) · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[12] Bruin, Nils, Chabauty methods using elliptic curves, J. Reine Angew. Math., 562, 27-49 (2003) · Zbl 1135.11320 · doi:10.1515/crll.2003.076
[13] Bruin, Nils; Elkies, Noam D., Trinomials \(ax^7+bx+c\) and \(ax^8+bx+c\) with Galois groups of order 168 and \(8\cdot 168\). Algorithmic Number Theory, Sydney, 2002, Lecture Notes in Comput. Sci. 2369, 172-188 (2002), Springer, Berlin · Zbl 1058.11044 · doi:10.1007/3-540-45455-1\_14
[14] Bruin, Nils; Stoll, Michael, Deciding existence of rational points on curves: an experiment, Experiment. Math., 17, 2, 181-189 (2008) · Zbl 1218.11065
[15] Bruin, Nils; Stoll, Michael, Two-cover descent on hyperelliptic curves, Math. Comp., 78, 268, 2347-2370 (2009) · Zbl 1208.11078 · doi:10.1090/S0025-5718-09-02255-8
[16] Bruin, Nils; Stoll, Michael, The Mordell-Weil sieve: proving non-existence of rational points on curves, LMS J. Comput. Math., 13, 272-306 (2010) · Zbl 1278.11069 · doi:10.1112/S1461157009000187
[17] Bugeaud, Yann; Mignotte, Maurice; Siksek, Samir; Stoll, Michael; Tengely, Szabolcs, Integral points on hyperelliptic curves, Algebra Number Theory, 2, 8, 859-885 (2008) · Zbl 1168.11026 · doi:10.2140/ant.2008.2.859
[18] Chabauty, Claude, Sur les points rationnels des courbes alg\'ebriques de genre sup\'erieur \`“a l”unit\'e, C. R. Acad. Sci. Paris, 212, 882-885 (1941) · Zbl 0025.24902
[19] Coleman, Robert F., Effective Chabauty, Duke Math. J., 52, 3, 765-770 (1985) · Zbl 0588.14015 · doi:10.1215/S0012-7094-85-05240-8
[20] Coleman, Robert F.; Gross, Benedict H., \(p\)-adic heights on curves. Algebraic Number Theory, Adv. Stud. Pure Math. 17, 73-81 (1989), Academic Press, Boston, MA · Zbl 0758.14009
[21] David, Sinnou, Minorations de formes lin\'eaires de logarithmes elliptiques, M\'em. Soc. Math. France (N.S.), 62, iv+143 pp. (1995) · Zbl 0859.11048
[22] Flynn, E. Victor, Coverings of curves of genus 2. Algorithmic Number Theory, Leiden, 2000, Lecture Notes in Comput. Sci. 1838, 65-84 (2000), Springer, Berlin · Zbl 0986.11042 · doi:10.1007/10722028\_3
[23] Flynn, E. V., The Hasse principle and the Brauer-Manin obstruction for curves, Manuscripta Math., 115, 4, 437-466 (2004) · Zbl 1069.11023 · doi:10.1007/s00229-004-0502-9
[24] Flynn, E. V.; Smart, N. P., Canonical heights on the Jacobians of curves of genus \(2\) and the infinite descent, Acta Arith., 79, 4, 333-352 (1997) · Zbl 0895.11026
[25] Flynn, E. Victor; Wetherell, Joseph L., Covering collections and a challenge problem of Serre, Acta Arith., 98, 2, 197-205 (2001) · Zbl 1049.11066 · doi:10.4064/aa98-2-9
[26] Gross, Benedict H., Local heights on curves. Arithmetic Geometry, Storrs, Conn., 1984, 327-339 (1986), Springer, New York · Zbl 0605.14027
[27] HKK N. Hirata-Kohno and T. Kovacs, Computing \(S\)-integral points on elliptic curves of rank at least 3, RIMS Kokyuroku 1898 (2014), 92-102.
[28] Kim, Minhyong, The motivic fundamental group of \(\mathbf{P}^1\backslash \{0,1,\infty \}\) and the theorem of Siegel, Invent. Math., 161, 3, 629-656 (2005) · Zbl 1090.14006 · doi:10.1007/s00222-004-0433-9
[29] Kim, Minhyong, Massey products for elliptic curves of rank 1, J. Amer. Math. Soc., 23, 3, 725-747 (2010) · Zbl 1225.11077 · doi:10.1090/S0894-0347-10-00665-X
[30] Lang, Serge, Introduction to Arakelov Theory, x+187 pp. (1988), Springer-Verlag, New York · Zbl 0667.14001 · doi:10.1007/978-1-4612-1031-3
[31] McCallum, William; Poonen, Bjorn, The method of Chabauty and Coleman. Explicit Methods in Number Theory, Panor. Synth\`eses 36, 99-117 (2012), Soc. Math. France, Paris · Zbl 1377.11077
[32] Mueller-Stoll J.Steffen M\"uller and Michael Stoll, Canonical heights on genus two Jacobians, in preparation, 2015. · Zbl 1383.11089
[33] Penrose, R., A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51, 406-413 (1955) · Zbl 0065.24603
[34] Peth{\H{o}}, Attila; Zimmer, Horst G.; Gebel, Josef; Herrmann, Emanuel, Computing all \(S\)-integral points on elliptic curves, Math. Proc. Cambridge Philos. Soc., 127, 3, 383-402 (1999) · Zbl 0949.11033 · doi:10.1017/S0305004199003916
[35] Pohlig, Stephen C.; Hellman, Martin E., An improved algorithm for computing logarithms over \({\rm GF}(p)\) and its cryptographic significance, IEEE Trans. Information Theory, IT-24, 1, 106-110 (1978) · Zbl 0375.68023
[36] Poonen, Bjorn, Heuristics for the Brauer-Manin obstruction for curves, Experiment. Math., 15, 4, 415-420 (2006) · Zbl 1173.11040
[37] Poonen, Bjorn; Schaefer, Edward F.; Stoll, Michael, Twists of \(X(7)\) and primitive solutions to \(x^2+y^3=z^7\), Duke Math. J., 137, 1, 103-158 (2007) · Zbl 1124.11019 · doi:10.1215/S0012-7094-07-13714-1
[38] Scharaschkin, Victor, Local-global problems and the Brauer-Manin obstruction, 59 pp. (1999), ProQuest LLC, Ann Arbor, MI
[39] Silverman, Joseph H.; Stange, Katherine E., Amicable pairs and aliquot cycles for elliptic curves, Exp. Math., 20, 3, 329-357 (2011) · Zbl 1269.11056 · doi:10.1080/10586458.2011.565253
[40] Smart, N. P., \(S\)-integral points on elliptic curves, Math. Proc. Cambridge Philos. Soc., 116, 3, 391-399 (1994) · Zbl 0817.11031 · doi:10.1017/S0305004100072698
[41] Smart98 N. P. Smart, The Algorithmic Resolution of Diophantine Equations, London Mathematical Society Student Texts, vol. 41, Cambridge University Press, Cambridge, 1998. · Zbl 0907.11001
[42] sage W.A. Stein et al., Sage Mathematics Software (Version 6.5), The Sage Development Team, 2015, http://www.sagemath.org.
[43] Stoll, Michael, On the height constant for curves of genus two, Acta Arith., 90, 2, 183-201 (1999) · Zbl 0932.11043
[44] Stoll, Michael, Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith., 98, 3, 245-277 (2001) · Zbl 0972.11058 · doi:10.4064/aa98-3-4
[45] Stoll, Michael, On the height constant for curves of genus two. II, Acta Arith., 104, 2, 165-182 (2002) · Zbl 1139.11318 · doi:10.4064/aa104-2-6
[46] Stoll:KummerG3 M. Stoll, An explicit theory of heights for hyperelliptic jacobians of genus three, preprint (2014), http://www.mathe2.uni-bayreuth.de/stoll/papers/Kummer-g3-hyp-2014-05-15.pdf.
[47] Stroeker, R. J.; Tzanakis, N., Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms, Acta Arith., 67, 2, 177-196 (1994) · Zbl 0805.11026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.