×

The motivic fundamental group of \(\mathbf P^1\setminus\{0,1,\infty\}\) and the theorem of Siegel. (English) Zbl 1090.14006

The aim of the paper is to show how results in Diophantine geometry can be achieved by studying the arithmetic fundamental group of an algebraic variety \(X\) over a number field \(F\). Here the author takes \(F =\mathbb Q\) and \(X =\mathbb P^1_{\mathbb Q}-\{0,1,\infty\}\) and considers the unipotent motivic fundamental group in the sense of P. Deligne [in: Galois groups over \(\mathbb Q\), Publ. Math. Sci. Res. Inst. 16, 79–297 (1989; Zbl 0742.14022)]. Then he proves Siegel’s theorem on the finiteness of integral points for the thrice-punctured projective line. The following is an outline of his proof.
Let \(S\) be a finite set of primes, fix \(p\not\in S\) and an integral point \(x\in{\mathcal X} = \mathbb P^1_{\mathbb Z}-\{0,1,\infty\}\). Put \(T = S\cup \{p\}\) and let \(Y\) be the reduction of \(\mathcal X\bmod p\), \(y\in Y\) the reduction mod\(p\) of the point \(x\). The \(p\)-adic unipotent Albanese map is then the following map: \[ U\text{\,Alb}_x:X(\mathbb Q_p)\cap \overline Y\to \pi_{1, \text{DR}}(X,x)(\mathbb Q_p) \] where \(\overline Y\) are the points that reduce mod\(\,p\) to points in \(Y\). The image of the integral points \({\mathcal X}(\mathbb Z_S)\) under the Albanese map is essentially contained inside the image of another map \[ H^1_f (\Gamma_T,\pi_{1,\text{ét}} (X,x))\to \pi_{1, \text{DR}}(X\otimes \mathbb Q_p,x) \] from a suitable continuous global cohomology set to the De Rham fundamental group.
\(H^1_f(\Gamma_T,\pi_{1,\text{ét}}(X,x))\) has the natural structure of a proalgebraic variety. By looking at various quotients \([\pi_{1,\text{DR}}]_n\) and \([\pi_{1,\text{ét}}]_n\) the author shows that for large \(n\) and \(p\) the image of \(H^1_f(\Gamma_T, [\pi_{1,\text{ét}}(X,x)]_n)\) under the map to \([\pi_{1,\text{DR}}(X\otimes \mathbb Q_p,x)]_n\) lies in some proper subvariety. Thus fact, together with the identity principle for Colemann’s functions and compactness yields the finiteness of Siegel’s theorem.
The results of this paper – as noted by the author – may be viewed as a non abelian lift of C. Chabauty’s proof [C. R. Acad. Sci., Paris 212, 882–885 (1941; Zbl 0025.24902)].

MSC:

14H30 Coverings of curves, fundamental group
14F42 Motivic cohomology; motivic homotopy theory
Full Text: DOI

References:

[1] Berthelot, P.: Finitude et pureté cohomologique en cohomologie rigide. With an appendix in English by Aise Johan de Jong. Invent. Math. 128, 329–377 (1997) · Zbl 0908.14005
[2] Besser, A.: Coleman integration using the Tannakian formalism. Math. Ann. 322, 19–48 (2002) · Zbl 1013.11028 · doi:10.1007/s002080100263
[3] Besser, A., Furusho, H.: The double shuffle relations for p-adic multiple zeta values. math.NT/0310177 · Zbl 1172.11043
[4] Chabauty, C.: Sur les points rationnels des courbes algébriques de genre supérieur à l’unité. C. R. Acad. Sci., Paris 212, 882–885 (1941) · Zbl 0025.24902
[5] Chiarellotto, B., Le Stum, B.: F-isocristaux unipotents. Compos. Math. 116, 81–110 (1999) · Zbl 0936.14017 · doi:10.1023/A:1000602824628
[6] Coleman, R.F.: Effective Chabauty. Duke Math. J. 52, 765–770 (1985) · Zbl 0588.14015 · doi:10.1215/S0012-7094-85-05240-8
[7] Deligne, P.: Le groupe fondamental de la droite projective moins trois points. Galois groups over Q (Berkeley, CA, 1987), 79–297, Math. Sci. Res. Inst. Publ., vol. 16. New York: Springer 1989 · Zbl 0742.14022
[8] Furusho, H.: p-adic multiple zeta values I – p-adic multiple polylogarithms and the p-adic KZ equation. Invent. Math. 155, 253–286 (2004) · Zbl 1061.11034 · doi:10.1007/s00222-003-0320-9
[9] Hain, R.M.: Higher Albanese manifolds. Hodge theory (Sant Cugat, 1985), pp. 84–91. Lect. Notes Math., vol. 1246. Berlin: Springer 1987
[10] Köthe, G.: Topological Vector Spaces I. 2nd printing, revised. Berlin, Heidelberg, New York: Springer (1983)
[11] Serre, J.-P.: Local Fields. Berlin, Heidelberg, New York: Springer 1979
[12] Soulé, C.: K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale. Invent. Math. 55, 251–295 (1979) · Zbl 0437.12008 · doi:10.1007/BF01406843
[13] Vologodsky, V.: Hodge structure on the fundamental group and its application to p-adic integration. Mosc. Math. J. 3, 205–247, 260 (2003) · Zbl 1050.14013
[14] Wintenberger, J.-P.: Un scindage de la filtration de Hodge pour certaines variétés algébriques sur les corps locaux. Ann. Math. (2) 119, 511–548 (1984) · Zbl 0599.14018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.