×

Super-linear spreading in local and non-local cane toads equations. (English. French summary) Zbl 1375.35565

Summary: In this paper, we show super-linear propagation in a nonlocal reaction-diffusion-mutation equation modeling the invasion of cane toads in Australia that has attracted attention recently from the mathematical point of view. The population of toads is structured by a phenotypical trait that governs the spatial diffusion. In this paper, we are concerned with the case when the diffusivity can take unbounded values, and we prove that the population spreads as \(t^{3/2}\). We also get the sharp rate of spreading in a related local model.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
45K05 Integro-partial differential equations
35B99 Qualitative properties of solutions to partial differential equations
92D25 Population dynamics (general)
92D40 Ecology

References:

[1] Thomas, C. D.; Simmons, A. D., Changes in dispersal during species’ range expansions, Am. Nat., 164, 3, 378-395 (2004)
[2] Alfaro, M.; Coville, J.; Raoul, G., Travelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypic trait, Commun. Partial Differ. Equ., 38, 12, 2126-2154 (2013) · Zbl 1284.35446
[3] Arnold, A.; Desvillettes, L.; Prévost, C., Existence of nontrivial steady states for populations structured with respect to space and a continuous trait, Commun. Pure Appl. Anal., 11, 1, 83-96 (2012) · Zbl 1303.92091
[4] Barles, G.; Evans, L. C.; Souganidis, P. E., Wavefront propagation for reaction-diffusion systems of PDE, Duke Math. J., 61, 3, 835-858 (1990) · Zbl 0749.35015
[5] Bénichou, O.; Calvez, V.; Meunier, N.; Voituriez, R., Front acceleration by dynamic selection in fisher population waves, Phys. Rev. E, 86, Article 041908 pp. (2012)
[6] Berestycki, H.; Nadin, G.; Perthame, B.; Ryzhik, L., The non-local Fisher-KPP equation: travelling waves and steady states, Nonlinearity, 22, 12, 2813-2844 (2009) · Zbl 1195.35088
[7] Berestycki, N.; Mouhot, C.; Raoul, G., Existence of self-accelerating fronts for a non-local reaction-diffusion equations
[8] Bouin, E.; Calvez, V., Travelling waves for the cane toads equation with bounded traits, Nonlinearity, 27, 9, 2233-2253 (2014) · Zbl 1301.35187
[9] Bouin, E.; Calvez, V.; Meunier, N.; Mirrahimi, S.; Perthame, B.; Raoul, G.; Voituriez, R., Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration, C. R. Acad. Sci. Paris, Ser. I, 350, 15-16, 761-766 (2012) · Zbl 1253.35186
[10] Bouin, E.; Calvez, V.; Nadin, G., Propagation in a kinetic reaction-transport equation: travelling waves and accelerating fronts, Arch. Ration. Mech. Anal., 217, 2, 571-617 (2015) · Zbl 1317.35267
[11] Bouin, E.; Henderson, C.; Ryzhik, L., The Bramson delay in the cane toads equations · Zbl 1370.35175
[12] Bouin, E.; Mirrahimi, S., A Hamilton-Jacobi approach for a model of population structured by space and trait, Commun. Math. Sci., 13, 6, 1431-1452 (2015) · Zbl 1351.92040
[13] Bramson, M., Maximal displacement of branching Brownian motion, Commun. Pure Appl. Math., 31, 5, 531-581 (1978) · Zbl 0361.60052
[14] Cabré, X.; Coulon, A.-C.; Roquejoffre, J.-M., Propagation in Fisher-KPP type equations with fractional diffusion in periodic media, C. R. Acad. Sci. Paris, Ser. I, 350, 19-20, 885-890 (2012) · Zbl 1253.35198
[15] Cabré, X.; Roquejoffre, J.-M., The influence of fractional diffusion in Fisher-KPP equations, Commun. Math. Phys., 320, 3, 679-722 (2013) · Zbl 1307.35310
[16] Champagnat, N.; Méléard, S., Invasion and adaptive evolution for individual-based spatially structured populations, J. Math. Biol., 55, 2, 147-188 (2007) · Zbl 1129.60080
[17] Coulon, A.-C.; Roquejoffre, J.-M., Transition between linear and exponential propagation in Fisher-KPP type reaction-diffusion equations, Commun. Partial Differ. Equ., 37, 11, 2029-2049 (2012) · Zbl 1263.35142
[18] Dautray, R.; Lions, J.-L., Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3, Spectral Theory and Applications (1990), Springer-Verlag: Springer-Verlag Berlin, with the collaboration of Michel Artola and Michel Cessenat, translated from the French by John C. Amson · Zbl 0784.73001
[19] Diekmann, O.; Jabin, P.-E.; Mischler, S.; Perthame, B., The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach, Theor. Popul. Biol., 67, 4, 257-271 (2005) · Zbl 1072.92035
[20] Evans, L. C.; Souganidis, P. E., A PDE approach to geometric optics for certain semilinear parabolic equations, Indiana Univ. Math. J., 38, 1, 141-172 (1989) · Zbl 0692.35014
[21] Faye, G.; Holzer, M., Modulated traveling fronts for a nonlocal Fisher-KPP equation: a dynamical systems approach, J. Differ. Equ., 258, 7, 2257-2289 (2015) · Zbl 1320.35135
[22] Fisher, R., The wave of advance of advantageous genes, Annu. Eugen., 7, 355-369 (1937) · JFM 63.1111.04
[23] Fleming, W. H.; Souganidis, P. E., PDE-viscosity solution approach to some problems of large deviations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 4, 171-192 (1986) · Zbl 0622.60032
[24] Garnier, J., Accelerating solutions in integro-differential equations, SIAM J. Math. Anal., 43, 4, 1955-1974 (2011) · Zbl 1232.47058
[25] Genieys, S.; Volpert, V.; Auger, P., Pattern and waves for a model in population dynamics with nonlocal consumption of resources, Math. Model. Nat. Phenom., 1, 1, 65-82 (2006) · Zbl 1201.92055
[26] Gilbarg, D.; Trudinger, N., Elliptic Partial Differential Equations of Second Order, Classics in Mathematics (2001), Springer-Verlag: Springer-Verlag Berlin, reprint of the 1998 edition · Zbl 1042.35002
[27] Gourley, S. A., Travelling front solutions of a nonlocal Fisher equation, J. Math. Biol., 41, 3, 272-284 (2000) · Zbl 0982.92028
[28] Hamel, F.; Nolen, J.; Roquejoffre, J.-M.; Ryzhik, L., A short proof of the logarithmic Bramson correction in Fisher-KPP equations, Netw. Heterog. Media, 8, 1, 275-289 (2013) · Zbl 1275.35067
[29] Hamel, F.; Nolen, J.; Roquejoffre, J.-M.; Ryzhik, L., The logarithmic delay of KPP fronts in a periodic medium, J. Europ. Math. Soc., 18, 465-505 (2016) · Zbl 1338.35243
[30] Hamel, F.; Roques, L., Fast propagation for KPP equations with slowly decaying initial conditions, J. Differ. Equ., 249, 7, 1726-1745 (2010) · Zbl 1213.35100
[31] Hamel, F.; Ryzhik, L., On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds, Nonlinearity, 27, 11, 2735-2753 (2014) · Zbl 1317.35122
[32] Henderson, C., Propagation of solutions to the Fisher-KPP equation with slowly decaying initial data (2015), preprint
[33] Kokko, H.; López-Sepulcre, A., From individual dispersal to species ranges: perspectives for a changing world, Science, 313, 5788, 789-791 (2006)
[34] Kolmogorov, A. N.; Petrovskii, I. G.; Piskunov, N. S., Étude de l’équation de la chaleur avec croissance de la quantité de matière et son application à un problème biologique, Bull. Moskov. Gos. Univ. Mat. Mekh., 1, 1-25 (1937), see P. Pelcé (Ed.), Dynamics of Curved Fronts, Perspectives in Physics, Academic Press Inc., Boston, MA, 1988, pp. 105-130 for an English translation
[35] Méléard, S.; Mirrahimi, S., Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity, Commun. Partial Differ. Equ., 40, 5, 957-993 (2015) · Zbl 1346.35109
[36] Nadin, G.; Perthame, B.; Tang, M., Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation, C. R. Acad. Sci. Paris, Ser. I, 349, 9-10, 553-557 (2011) · Zbl 1219.35038
[37] Nadin, G.; Rossi, L.; Ryzhik, L.; Perthame, B., Wave-like solutions for nonlocal reaction-diffusion equations: a toy model, Math. Model. Nat. Phenom., 8, 3, 33-41 (2013) · Zbl 1280.34066
[38] Perthame, B.; Barles, G., Dirac concentrations in Lotka-Volterra parabolic PDEs, Indiana Univ. Math. J., 57, 7, 3275-3301 (2008) · Zbl 1172.35005
[39] Phillips, B. L.; Brown, G. P.; Webb, J. K.; Shine, R., Invasion and the evolution of speed in toads, Nature, 439, 7078, 803 (2006)
[40] Ronce, O., How does it feel to be like a rolling stone? Ten questions about dispersal evolution, Annu. Rev. Ecol. Evol. Syst., 38, 1, 231-253 (2007)
[41] Roquejoffre, J.-M.; Ryzhik, L., Lecture Notes in a Toulouse School on KPP and Probability (2014)
[42] Shine, R.; Brown, G. P.; Phillips, B. P., An evolutionary process that assembles phenotypes through space rather than through time, Proc. Natl. Acad. Sci. USA, 108, 14, 5708-5711 (2011)
[43] Thomas, C. D.; Bodsworth, E. J.; Wilson, R. J.; Simmons, A. D.; Davis, Z. G.; Musche, M.; Conradt, L., Ecological and evolutionary processes at expanding range margins, Nature, 411, 577-581 (2001)
[44] Turanova, O., On a model of a population with variable motility, Math. Models Methods Appl. Sci., 25, 10, 1961-2014 (2015) · Zbl 1326.92062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.