×

Fast propagation for KPP equations with slowly decaying initial conditions. (English) Zbl 1213.35100

This paper concerns an analysis of the large-time behavior of solutions of one-dimensional Fisher-KPP reaction-diffusion equations. The initial conditions are assumed to be globally front-like and to decay at infinity towards the unstable steady state more slowly than any exponentially decaying function. The authors prove that all level sets of the solutions move infinitely fast as time goes to infinity. The locations of the level sets are expressed in terms of the decay of the initial condition. Furthermore, the spatial profiles of the solutions become asymptotically uniformly flat at large time.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35K57 Reaction-diffusion equations
35K58 Semilinear parabolic equations
35B35 Stability in context of PDEs

References:

[1] Aronson, D. G.; Weinberger, H. F., Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 30, 33-76 (1978) · Zbl 0407.92014
[2] Bages, M.; Martinez, P.; Roquejoffre, J.-M., Dynamique en temps grand pour une classe d’équations de type KPP en milieu périodique, C. R. Acad. Paris Ser. I, 346, 1051-1056 (2008) · Zbl 1156.35322
[3] Berestycki, H.; Hamel, F., Generalized travelling waves for reaction-diffusion equations, (Perspectives in Nonlinear Partial Differential Equations. Perspectives in Nonlinear Partial Differential Equations, Contemp. Math., vol. 446 (2007), Amer. Math. Soc.), 101-123, in honor of H. Brezis · Zbl 1200.35169
[4] H. Berestycki, F. Hamel, Generalized transition waves and their properties, preprint.; H. Berestycki, F. Hamel, Generalized transition waves and their properties, preprint. · Zbl 1248.35039
[5] Berestycki, H.; Hamel, F.; Nadin, G., Asymptotic spreading in heterogeneous diffusive media, J. Funct. Anal., 255, 2146-2189 (2008) · Zbl 1234.35033
[6] Berestycki, H.; Hamel, F.; Nadirashvili, N., The speed of propagation for KPP type problems. I — Periodic framework, J. Eur. Math. Soc., 7, 173-213 (2005) · Zbl 1142.35464
[7] Berestycki, H.; Hamel, F.; Nadirashvili, N., The speed of propagation for KPP type problems. II — General domains, J. Amer. Math. Soc., 23, 1-34 (2010) · Zbl 1197.35073
[8] Berestycki, H.; Larrouturou, B.; Roquejoffre, J.-M., Stability of traveling fronts in a curved flame model, Part I: Linear analysis, Arch. Ration. Mech. Anal., 117, 97-117 (1992) · Zbl 0763.76033
[9] Booty, M. R.; Haberman, R.; Minzoni, A. A., The accommodation of traveling waves of Fisher’s to the dynamics of the leading tail, SIAM J. Appl. Math., 53, 1009-1025 (1993) · Zbl 0790.35043
[10] Bramson, M., Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc., 44 (1983) · Zbl 0517.60083
[11] Cabré, X.; Roquejoffre, J.-M., Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire, C. R. Math. Acad. Sci. Paris, 347, 1361-1366 (2009) · Zbl 1182.35072
[12] Constantin, P.; Kiselev, A.; Oberman, A.; Ryzhik, L., Bulk burning rate in passive-reactive diffusion, Arch. Ration. Mech. Anal., 154, 53-91 (2000) · Zbl 0979.76093
[13] Ebert, U.; van Saarloos, W., Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts, Phys. D, 146, 1-99 (2000) · Zbl 0984.35030
[14] Fife, P. C.; McLeod, J. B., The approach of solutions of non-linear diffusion equations to traveling front solutions, Arch. Ration. Mech. Anal., 65, 335-361 (1977) · Zbl 0361.35035
[15] Fisher, R. A., The advance of advantageous genes, Ann. Eugenics, 7, 335-369 (1937) · JFM 63.1111.04
[16] F. Hamel, G. Nadin, Large-time KPP spreading speeds with exponentially oscillating initial data, preprint.; F. Hamel, G. Nadin, Large-time KPP spreading speeds with exponentially oscillating initial data, preprint.
[17] F. Hamel, L. Roques, Uniqueness and stability properties of monostable pulsating fronts, J. Eur. Math. Soc., in press.; F. Hamel, L. Roques, Uniqueness and stability properties of monostable pulsating fronts, J. Eur. Math. Soc., in press. · Zbl 1219.35035
[18] F. Hamel, Y. Sire, Spreading speeds for some reaction-diffusion equations with general initial conditions, preprint.; F. Hamel, Y. Sire, Spreading speeds for some reaction-diffusion equations with general initial conditions, preprint. · Zbl 1259.35054
[19] J. Huang, W. Shen, Speeds of spread and propagation for KPP models in time almost and space periodic media, preprint.; J. Huang, W. Shen, Speeds of spread and propagation for KPP models in time almost and space periodic media, preprint. · Zbl 1172.35423
[20] Kametaka, Y., On the nonlinear diffusion equation of Kolmogorov-Petrovskii-Piskunov type, Osaka J. Math., 13, 11-66 (1976) · Zbl 0344.35050
[21] Kanel’, Ya. I., Stabilization of solution of the Cauchy problem for equations encountered in combustion theory, Mat. Sb., 59, 245-288 (1962) · Zbl 0152.10302
[22] Kanel’, Ya. I., On the stability of solutions of the equations of combustion theory for finite initial functions, Mat. Sb., 65, 398-413 (1964) · Zbl 0168.36301
[23] Kay, A. L.; Sherratt, J. A.; McLeod, J. B., Comparison theorems and variable speed waves for a scalar reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 131, 1133-1161 (2001) · Zbl 0996.35034
[24] Kiselev, A.; Ryzhik, L., Enhancement of the traveling front speeds in reaction-diffusion equations with advection, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18, 309-358 (2001) · Zbl 1002.35069
[25] Kolmogorov, A. N.; Petrovsky, I. G.; Piskunov, N. S., Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou Sér. Inter. A, 1, 1-26 (1937) · Zbl 0018.32106
[26] Larson, D. A., Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type, SIAM J. Appl. Math., 34, 93-103 (1978) · Zbl 0373.35036
[27] Lau, K.-S., On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov, J. Differential Equations, 59, 44-70 (1985) · Zbl 0584.35091
[28] Levermore, C. D.; Xin, J. X., Multidimensional stability of traveling waves in a bistable reaction-diffusion equation, II, Comm. Partial Differential Equations, 17, 1901-1924 (1992) · Zbl 0789.35020
[29] Liang, X.; Yi, Y.; Zhao, X.-Q., Spreading speeds and traveling waves for periodic evolution systems, J. Differential Equations, 231, 57-77 (2006) · Zbl 1105.37017
[30] Mallordy, J.-F.; Roquejoffre, J.-M., A parabolic equation of the KPP type in higher dimensions, SIAM J. Math. Anal., 26, 1-20 (1995) · Zbl 0813.35041
[31] Matano, H.; Nara, M.; Taniguchi, M., Stability of planar waves in the Allen-Cahn equation, Comm. Partial Differential Equations, 34, 976-1002 (2009) · Zbl 1191.35053
[32] McKean, H. P., Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov, Comm. Pure Appl. Math., 28, 323-331 (1975) · Zbl 0316.35053
[33] Mellet, A.; Nolen, J.; Roquejoffre, J.-M.; Ryzhik, L., Stability of generalized transition fronts, Comm. Partial Differential Equations, 34, 521-552 (2009) · Zbl 1173.35021
[34] Needham, D. J.; Barnes, A. N., Reaction-diffusion and phase waves occurring in a class of scalar reaction-diffusion equations, Nonlinearity, 12, 41-58 (1999) · Zbl 0933.35096
[35] Nolen, J.; Rudd, M.; Xin, J., Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds, Dyn. Partial Differ. Equ., 2, 1-24 (2005) · Zbl 1179.35166
[36] Roquejoffre, J.-M., Stability of traveling fronts in a curved flame model, Part II: Non-linear orbital stability, Arch. Ration. Mech. Anal., 117, 119-153 (1992) · Zbl 0763.76034
[37] Roquejoffre, J.-M., Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14, 499-552 (1997) · Zbl 0884.35013
[38] Roques, L.; Hamel, F.; Fayard, J.; Fady, B.; Klein, E. K., Recolonisation by diffusion can generate increasing rates of spread, Theor. Popul. Biol., 77, 205-212 (2010) · Zbl 1457.92148
[39] Rothe, F., Convergence to travelling fronts in semilinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 80, 213-234 (1978) · Zbl 0389.35024
[40] Sattinger, D. H., Stability of waves of nonlinear parabolic systems, Adv. Math., 22, 312-355 (1976) · Zbl 0344.35051
[41] Sherratt, J. A.; Marchant, B. P., Algebraic decay and variable speeds in wavefront solutions of a scalar reaction-diffusion equation, IMA J. Appl. Math., 56, 289-302 (1996) · Zbl 0858.35062
[42] Uchiyama, K., The behaviour of solutions of some semilinear diffusion equation for large time, J. Math. Kyoto Univ., 18, 453-508 (1978) · Zbl 0408.35053
[43] Weinberger, H. F., On spreading speeds and traveling waves for growth and migration in periodic habitat, J. Math. Biol., 45, 511-548 (2002) · Zbl 1058.92036
[44] Xin, X., Existence and stability of travelling waves in periodic media governed by a bistable nonlinearity, J. Dynam. Differential Equations, 3, 541-573 (1991) · Zbl 0769.35033
[45] Xin, J. X., Analysis and modeling of front propagation in heterogeneous media, SIAM Rev., 42, 161-230 (2000) · Zbl 0951.35060
[46] Zlatoš, A., Quenching and propagation of combustion without ignition temperature cutoff, Nonlinearity, 18, 1463-1475 (2005) · Zbl 1116.35069
[47] Zlatoš, A., Sharp transition between extinction and propagation of reaction, J. Amer. Math. Soc., 19, 251-263 (2006) · Zbl 1081.35011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.