×

A new integrable symplectic map by the binary nonlinearization to the super AKNS system. (English) Zbl 1375.35438

Summary: Based on the constructed new Lie super-algebra from OSP(2,2), the super bi-Hamiltonian structure of a new super AKNS hierarchy is obtained by making use of super-trace identity. For the new super AKNS system, an explicit symmetry constraint between the potentials and the eigenfunctions is proposed. Moreover, the super AKNS system is decomposed into two compatible finite-dimensional super integrable systems and the obtained super systems are proved to be finite-dimensional super integrable Hamiltonian systems in the super-symmetry manifold \(\mathbb R^{4 N \mid 4 N} .\)

MSC:

35Q51 Soliton equations
37J10 Symplectic mappings, fixed points (dynamical systems) (MSC2010)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K30 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with infinite-dimensional Lie algebras and other algebraic structures
Full Text: DOI

References:

[1] Konopelchenko, B. G.; Sidorenko, J.; Strampp, W., (1+1)-dimensional integrable systems as symmetry constraints of (2+1)-dimensional systems, Phys. Lett. A, 157, 17-21 (1991)
[2] Cao, C. W., Nonlinearization of Lax system for the AKNS hierarchy, Sci. Sin. A, 33, 528-536 (1990) · Zbl 0714.58026
[3] Ma, W. X.; Strmpp, W., An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems, Phys. Lett. A, 185, 277-286 (1994) · Zbl 0992.37502
[4] Belokolos, E. D.; Bobenko, A. I.; Enol’skii, V. Z.; Its, A. R.; Matveev, V. B., Algebro-Geometric Approach To Nonlinear Integrable Equations (1994), Springer: Springer Berlin · Zbl 0809.35001
[5] Cheng, Y.; Li, Y. S., The constraint of the Kadomtsev-Petviashvili equation and its special solutions, Phys. Lett. A, 157, 22-26 (1991)
[6] Tao, S. X.; Xia, T. C., Lie algebra and lie super algebra for integrable couplings of C-KdV hierarchy, Chin. Phys. Lett., 27, 040202-040206 (2010)
[7] Kupershmidt, B. A., A super Korteweg-de Vries equation, Phys. Lett., 102, 213-215 (1983)
[8] Yu, J.; He, J. S.; Cheng, Y.; Han, J. W., A novel symmetry constraint of the super CKdV System, J. Phys. A: Math. Gen., 43, 445201 (2010) · Zbl 1203.35253
[9] Zeng, Y. B., The integrable system associated with higher-order constraint, Acta. Math. Sin., 38, 642-652 (1995) · Zbl 0841.58035
[10] Gürses, M.; Ouz, ö., A super AKNS scheme, Phys. Lett., 108, 437-440 (1985)
[11] Popowicz, Z., The fully supersymmetric AKNS equations, J. Phys. A: Math. Gen., 23, 1127-1136 (1990) · Zbl 0713.35087
[12] Wang, H.; Xia, T. C., The fractional supertrace identity and its application to the super Ablowitz-Kaup-Newell-Segur hierarchy, J. Math. Phys., 54, 043505 (2013) · Zbl 1298.37060
[13] Kac, V. G., A sketch of Lie superalgebra theory, Comm. Math. Phys., 53, 31-64 (1977) · Zbl 0359.17009
[14] Gould, M. D.; Isaac, P. S.; Werry, J. L., Invariants and reduced matrix elements associated with the Lie superalgebra \(g l(m | n)\), J. Math. Phys., 54, 013505 (2013) · Zbl 1290.17007
[15] Debergh, N.; Van der Jeugt, J., Realizations of the lie superalgebra q(2) and applications, J. Phys. A: Math. Gen., 34, 8119-8134 (2001) · Zbl 1052.81041
[16] Ma, W. X.; Meng, J. H.; Zhang, H. Q., Integrable couplings, variational identities and hamiltonian formulations, Glob. J. Math. Sci., 1, 1-17 (2012)
[18] Li, X. Y.; Zhao, Q. L.; Li, Y. X.; Dong, H. H., A super-discrete variational identity and its application for constructing super-discrete Hamiltonian systems, J. Math. Phys., 56, 3, 033504-033514 (2015) · Zbl 1310.37041
[19] He, J. S.; Yu, J.; Cheng, Y., Binary nonlinearization of the super AKNS system, Modern Phys. Lett. B, 22, 275-288 (2008) · Zbl 1154.37364
[20] Yu, J.; Han, J. W.; He, J. S., Binary nonlinearization of the super AKNS systemunder an implicit symmetry constraint, J. Phys. A: Math. Gen., 42 (2009), 465201 (10pp) · Zbl 1183.37113
[21] Hu, X. B., An approach to generate super extensions of integrable systems, J. Phys. A: Math. Gen., 30, 619-632 (1997) · Zbl 0947.37039
[22] Ma, W. X.; He, J. S.; Qin, Z. Y., A supertrace identity and its applications to superintegrable systems, J. Math. Phys., 49 (2008), 033511, 13 pp · Zbl 1153.81398
[23] Sun, H. Z.; Han, Q. Z., Lie Algebras and Lie Superalgebras and their Applications in Physics (1999), Peking University Press: Peking University Press Beijing, China
[24] Fayet, P.; Ferrara, S., Supersymmetry, Phys. Rep., 32, 249-334 (1977)
[25] Liu, Q. P.; Hu, X. B.; Zhang, M. X., Super symmetric modifed Korteweg-de Vries Equation: Bilinear approach, Nonlinearity, 18, 1597-1603 (2005) · Zbl 1181.35216
[26] Xin, Y. M.; Li, Y. X.; Cheng, Z. S.; Huang, X., Global exponential stability for switched memristive neural networks with time-varying delays, Neural Netw., 80, 34-42 (2016) · Zbl 1417.34183
[27] Corwin, L.; Neeman, Y.; Sternberg, S., Graded Lie algebras in mathematics and physics (Bose-Fermi symmetry), Rev. Modern Phys., 47, 573-603 (1975) · Zbl 0557.17004
[28] Yu, J.; He, J. S.; Ma, W. X.; Cheng, Y., The Bargmann symmetry constraint and binary nonlinearization of the super dirac systems, Chin. Ann. Math., 31, 361-372 (2010) · Zbl 1200.35244
[29] Ma, W. X., Bargmann symmetry constraints of soliton equations, Nonlinear Anal., 47, 5199-5211 (2001) · Zbl 1042.37529
[30] Ma, W. X., The theory of binary nonlinearization and its applications to soliton equations, (Proceedings of the Third Asian Mathematical Conference, 2000, Diliman (2002), World Scientific: World Scientific River Edge, NJ), 337-351 · Zbl 1021.35093
[31] Ma, W. X.; Zeng, Y. B., Binary constrained flows and separation of variables for soliton equations, ANZIAM J., 44, 129-139 (2002) · Zbl 1066.35085
[32] Han, J. W.; Yu, J.; He, J. S., A matrix Lie superalgebra and its applications, Adv. Math. Phys., 2013, 416520-416530 (2013) · Zbl 1292.81064
[33] Li, Y. S.; Zhang, L. N., Hamiltonian structure of the super evolution equation, J. Math. Phys., 31, 470-475 (1990) · Zbl 0705.58024
[34] Zhao, Q. L.; Li, Y. X.; Li, X. Y.; Sun, Y. P., The finite-dimensional super integrable system of a super NLS-mKdV equation, Commun. Nonlinear Sci. Numer. Simul., 17, 4044-4052 (2012) · Zbl 1248.35200
[35] Ma, W. X., Symmetry constraint of MKdV equations by binary nonlinearization, Physica A, 219, 467-481 (1995)
[36] Zhao, Q. L.; Li, X. Y., A Bargmann system and the involutive solutions associated with a new 4-Order lattice hierarchy, Anal. Math. Phys., 6, 237-254 (2016) · Zbl 1356.37077
[37] Li, X. Y.; Zhao, Q. L.; Li, Y. X., A new integrable symplectic map for 4-field Blaszak-Marciniak lattice equations, Commun. Nonlinear Sci. Numer. Simul., 19, 2324-2333 (2014) · Zbl 1457.37088
[38] Dong, H. H.; zhang, Y.; Zhang, X. E., The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation, Commun. Nonlinear Sci. Numer. Simul., 36, 354-365 (2016) · Zbl 1470.39011
[39] Li, X. Y.; Zhao, Q. L.; Li, Y. X.; Dong, H. H., Binary bargmann symmetry constraint sssociated with \(3 \times 3\) discrete matrix spectral problem, J. Nonlinear Sci. Appl., 8, 496-506 (2015) · Zbl 1327.35335
[40] Wang, X. R.; Zhang, X. E.; Zhao, P. Y., Binary nonlinearization for AKNS-KN coupling system, Abstr. Appl. Anal. (2014) · Zbl 1472.37074
[41] Guo, X. R., On bilinear representations and infinite conservation laws of a nonlinear variable-coefficient equation, Appl. Math. Comput., 248, 531-535 (2014) · Zbl 1338.37085
[42] Tang, L. Y.; Fan, J. C., A family of Liouville integrable lattice equations and its conservation laws, Appl. Math. Comput., 217, 1907-1912 (2010) · Zbl 1202.39005
[43] Scheunert, M., (The Theory of Lie Superalgebras. The Theory of Lie Superalgebras, Lect. Notes in Math., vol. 716 (1978), Springer-Verlag) · Zbl 0407.17001
[45] Ma, W. X.; Fuchssteiner, B.; Oevel, W., A three-by-three matrix spectral problem for AKNS hierarchy and its binary nonlinearization, Physica A, 233, 331-354 (1996)
[46] Ma, W. X.; Zhou, Z. X., Binary symmetry constraints of n-wave interaction equations in 1+1 and 2+1 dimensions, J. Math. Phys., 42, 4345-4382 (2001) · Zbl 1063.37065
[47] Coleman, S.; Mandula, J., All possible symmetries of the S matrix, Phys. Rev., 159, 1251 (1967) · Zbl 0168.23702
[48] Bars, I.; Gunaydin, M., Unitary representations of noncompact supergroups, Comm. Math. Phys., 91, 31 (1983) · Zbl 0531.17002
[49] Zhao, Q. L.; Li, X. Y.; He, B. Y., Two super-integrable systems and associated super-hamiltonian structures, Modern Phys. Lett. B, 23, 3253-3264 (2009) · Zbl 1189.37072
[50] Dong, H. H.; Zhao, K.; Yang, H. W.; Li, Y. Q., Generalised (2+1)-dimensional super mKdV hierarchy for integrable systems in soliton theory, E. Asian J. Appl. Math., 5, 256-272 (2015) · Zbl 1457.35054
[51] Dong, H. H.; Guo, B. Y.; Yin, B. S., Generalized fractional supertrace identity for Hamiltonian structure of NLS-MKdV hierarchy with self-consistent sources, Anal. Math. Phys., 6, 199-209 (2016) · Zbl 1339.37051
[52] Yang, H. X.; Du, J.; Xu, X. X.; Cui, J. P., Hamiltonian and super-hamiltonian systems of a hierarchy of soliton equations, Appl. Math. Comput., 217, 1497-1508 (2010) · Zbl 1202.35205
[53] Ma, W. X.; Fuchssteiner, B., Integrable theory of the perturbation equations, Chaos Solitons Fractals, 7, 1227-1250 (1996) · Zbl 1080.37578
[54] Ma, W. X.; Xu, X. X.; Zhang, Y. F., Semi-direct sums of lie algebras and continuous integrable couplings, Phys. Lett. A, 351, 125-130 (2006) · Zbl 1234.37049
[55] Zhao, Q. L.; Wang, X. Z., The integrable coupling system of a \(3 \times 3\) discrete matrix spectral problem, Appl. Math. Comput., 216, 730-743 (2010) · Zbl 1190.37063
[56] Li, X. Y.; Li, Y. X.; Yang, H. X., Two families of liouville integrable lattice equations, Appl. Math. Comput., 217, 8671-8682 (2011) · Zbl 1222.37079
[57] Xu, X. X., An integrable coupling hierarchy of the Mkdv integrable systems, its Hamiltonian structure and corresponding nonisospectral integrable hierarchy, Appl. Math. Comput., 216, 344-353 (2010) · Zbl 1188.37065
[58] Xu, X. X., A deformed reduced semi-discrete Kaup-Newell equation, the related integrable family and Darboux transformation, Appl. Math. Comput., 251, 275-283 (2015) · Zbl 1328.37054
[59] Zhao, Q. L.; Li, Y. X.; Liu, F. S., Two integrable lattice hierarchies and their respective Darboux transformations, Appl. Math. Comput., 219, 5693-5705 (2013) · Zbl 1288.37023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.