×

Full waveform inversion guided by travel time tomography. (English) Zbl 1373.86014

Summary: Full waveform inversion (FWI) is a process in which seismic numerical simulations are fit to observed data by changing the wave velocity model of the medium under investigation. The problem is nonlinear, and therefore optimization techniques have been used to find a reasonable solution to the problem. The main problem in fitting the data is the lack of low spatial frequencies. This deficiency often leads to a local minimum and to nonplausible solutions. In this work we explore how to obtain low-frequency information for FWI. Our approach involves augmenting FWI with travel time tomography, which has low-frequency features. By jointly inverting these two problems we enrich FWI with information that can replace low-frequency data. In addition, we use high-order regularization, in a preliminary inversion stage, to prevent high-frequency features from polluting our model in the initial stages of the reconstruction. This regularization also promotes the nondominant low-frequency modes that exist in the FWI sensitivity. By applying a joint FWI and travel time inversion we are able to obtain a smooth model than can later be used to recover a good approximation for the true model. A second contribution of this paper involves the acceleration of the main computational bottleneck in FWI – the solution of the Helmholtz equation. We show that the solution time can be reduced by solving the equation for multiple right-hand sides using block multigrid preconditioned Krylov methods.

MSC:

86A22 Inverse problems in geophysics
86A15 Seismology (including tsunami modeling), earthquakes
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
35Q86 PDEs in connection with geophysics
35R30 Inverse problems for PDEs

Software:

MUMPS; PARDISO; jInv; clique; PSP

References:

[2] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, {\it A fully asynchronous multifrontal solver using distributed dynamic scheduling}, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 15-41. · Zbl 0992.65018
[3] F. Aminzadeh, B. Jean, and T. Kunz, {\it 3D Salt and Overthrust Models}, Society of Exploration Geophysicists, Tulsa, OK, 1997.
[4] A. H. Baker, J. M. Dennis, and E. R. Jessup, {\it On improving linear solver performance: A block variant of GMRES}, SIAM J. Sci. Comput., 27 (2006), pp. 1608-1626. · Zbl 1099.65029
[5] A. Benaichouche, M. Noble, and A. Gesret, {\it First arrival traveltime tomography using the fast marching method and the adjoint state technique}, in 77th EAGE Conference Proceedings, Madrid, 2015.
[6] B. Biondi and A. Almomin, {\it Simultaneous inversion of full data bandwidth by tomographic full-waveform inversion}, Geophysics, 79 (2014), pp. WA129-WA140.
[7] C. Boonyasiriwat, G. T. Schuster, P. Valasek, and W. Cao, {\it Applications of multiscale waveform inversion to marine data using a flooding technique and dynamic early-arrival windows}, Geophysics, 75 (2010), pp. R129-R136.
[8] W. L. Briggs, V. E. Henson, and S. F. McCormick, {\it A Multigrid Tutorial}, 2nd ed., SIAM, Philadelphia, 2000. · Zbl 0958.65128
[9] H. Calandra, S. Gratton, J. Langou, X. Pinel, and X. Vasseur, {\it Flexible variants of block restarted GMRES methods with application to geophysics}, SIAM J. Sci. Comput., 34 (2012), pp. A714-A736. · Zbl 1248.65036
[10] H. Calandra, S. Gratton, X. Pinel, and X. Vasseur, {\it An improved two-grid preconditioner for the solution of three-dimensional Helmholtz problems in heterogeneous media}, Numer. Linear Algebra Appl., 20 (2013), pp. 663-688. · Zbl 1313.65284
[11] S. Cools, B. Reps, and W. Vanroose, {\it A new level-dependent coarse grid correction scheme for indefinite Helmholtz problems}, Numer. Linear Algebra Appl., 21 (2014), pp. 513-533. · Zbl 1340.65294
[12] A. El Guennouni, K. Jbilou, and H. Sadok, {\it A block version of BiCGSTAB for linear systems with multiple right-hand sides}, Electron. Trans. Numer. Anal., 16 (2003), pp. 129-142. · Zbl 1065.65052
[13] I. Epanomeritakis, V. Akcelik, O. Ghattas, and J. Bielak, {\it A Newton-CG method for large-scale three-dimensional elastic full-waveform seismic inversion}, Inverse Probl., (2008). · Zbl 1142.65052
[14] Y. A. Erlangga, C. W. Oosterlee, and C. Vuik, {\it A novel multigrid based preconditioner for heterogeneous Helmholtz problems}, SIAM J. Sci. Comput., 27 (2006), pp. 1471-1492. · Zbl 1095.65109
[15] S. Fomel, S. Luo, and H. Zhao, {\it Fast sweeping method for the factored eikonal equation}, J. Comput. Phys., 228 (2009), pp. 6440-6455. · Zbl 1175.65125
[16] E. Haber, {\it Computational Methods in Geophysical Electromagnetics}, Vol. 1, SIAM, Philadelphia, 2014. · Zbl 1304.86001
[17] E. Haber, U. Ascher, and D. Oldenburg, {\it On optimization techniques for solving nonlinear inverse problems}, Inverse Probl., 16 (2000), pp. 1263-1280. · Zbl 0974.49021
[18] E. Haber and S. MacLachlan, {\it A fast method for the solution of the Helmholtz equation}, J. Comput. Phys., 230 (2011), pp. 4403-4418. · Zbl 1220.65172
[19] H. Knibbe, C. W. Oosterlee, and C. Vuik, {\it GPU implementation of a Helmholtz Krylov solver preconditioned by a shifted Laplace multigrid method}, J. Comput. Appl. Math., 236 (2011), pp. 281-293. · Zbl 1228.65208
[20] J. R. Krebs, J. E. Anderson, D. Hinkley, R. Neelamani, S. Lee, A. Baumstein, and M.-D. Lacasse, {\it Fast full-wavefield seismic inversion using encoded sources}, Geophysics, 74 (2009), pp. WCC177-WCC188.
[21] G. Lambaré, {\it Stereotomography}, Geophysics, 73 (2008), pp. VE25-VE34.
[22] G. Lambaré, M. Alerini, R. Baina, and P. Podvin, {\it Stereotomography: A semi-automatic approach for velocity macromodel estimation}, Geophys. Prospect., 52 (2004), pp. 671-681.
[23] S. Li, A. Vladimirsky, and S. Fomel, {\it First-break traveltime tomography with the double-square-root eikonal equation}, Geophysics, 78 (2013), pp. U89-U101.
[24] Z. Liu and J. Zhang, {\it Joint traveltime and waveform envelope inversion for near-surface imaging}, in 2015 SEG Annual Meeting, Society of Exploration Geophysicists, 2015.
[25] S. Luo and J. Qian, {\it Factored singularities and high-order Lax-Friedrichs sweeping schemes for point-source traveltimes and amplitudes}, J. Comput. Phys., 230 (2011), pp. 4742-4755. · Zbl 1220.78004
[26] S. Luo and J. Qian, {\it Fast sweeping methods for factored anisotropic eikonal equations: Multiplicative and additive factors}, J. Sci. Comput., 52 (2012), pp. 360-382. · Zbl 1255.65192
[27] S. Luo, J. Qian, and R. Burridge, {\it High-order factorization based high-order hybrid fast sweeping methods for point-source eikonal equations}, SIAM J. Numer. Anal., 52 (2014), pp. 23-44. · Zbl 1293.65130
[28] L. Métivier, R. Brossier, Q. Mérigot, E. Oudet, and J. Virieux, {\it Measuring the misfit between seismograms using an optimal transport distance: Application to full waveform inversion}, Geophys. J. Int., 205 (2016), pp. 345-377. · Zbl 1410.86018
[29] J. Nocedal and S. Wright, {\it Numerical Optimization}, Springer, New York, 1999. · Zbl 0930.65067
[30] Y. Notay and P. S. Vassilevski, {\it Recursive Krylov-based multigrid cycles}, Numer. Linear Algebra Appl., 15 (2008), pp. 473-487. · Zbl 1212.65132
[31] C. W. Oosterlee, C. Vuik, W. A. Mulder, and R.-E. Plessix, {\it Shifted-laplacian preconditioners for heterogeneous Helmholtz problems}, in Adv. Comput. Methods Sci. Eng., Springer, New York, 2010, pp. 21-46. · Zbl 1190.65183
[32] S. Operto, J. Virieux, P.Amestoy, J.-Y. L’Excellent, L. Giraud, and H. Ben Hadj Ali, {\it \(3\) d finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study}, Geophysics, 72 (2007), pp. SM195-SM211.
[33] J. Poulson, B. Engquist, S. Li, and L. Ying, {\it A parallel sweeping preconditioner for heterogeneous \(3\) D Helmholtz equations}, SIAM J. Sci. Comput., 35 (2013), pp. C194-C212. · Zbl 1275.65073
[34] R. G. Pratt, {\it Seismic waveform inversion in the frequency domain, part 1: Theory, and verification in a physical scale model}, Geophysics, 64 (1999), pp. 888-901.
[35] R. G. Pratt, C. Shin, and G. J. Hick, {\it Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion}, Geophys. J. Int., 133 (1998), pp. 341-362.
[36] B. Reps and T. Weinzierl, {\it Complex additive geometric multilevel solvers for Helmholtz equations on spacetrees}, ACM Trans. Math. Softw., 44 (2017), pp. 2:1-2:36. · Zbl 1380.65242
[37] L. I. Rudin, S. Osher, and E. Fatemi, {\it Nonlinear total variation based noise removal algorithms}, Physica D 60 (1992), pp. 259-268. · Zbl 0780.49028
[38] L. Ruthotto, E. Treister, and E. Haber, {\it JINV – a flexible Julia package for PDE parameter estimation}, SIAM J. Sci. Comput., to appear. · Zbl 1373.86013
[39] Y. Saad, {\it A flexible inner-outer preconditioned GMRES algorithm}, SIAM J. Sci. Comput., 14 (1993), pp. 461-469. · Zbl 0780.65022
[40] J. I. Sabbione and D. Velis, {\it Automatic first-breaks picking: New strategies and algorithms}, Geophysics, 75 (2010), pp. V67-V76.
[41] C. Saragiotis, T. Alkhalifah, and S. Fomel, {\it Automatic traveltime picking using instantaneous traveltime}, Geophysics, 78 (2013), pp. T53-T58.
[42] O. Schenk and K. Gärtner, {\it Solving unsymmetric sparse systems of linear equations with pardiso}, Future Gener. Comput. Syst., 20 (2004), pp. 475-487. · Zbl 1062.65035
[43] J. A. Sethian, {\it A fast marching level set method for monotonically advancing fronts}, Pro. Natl. Acad. Sci. USA, 93 (1996), pp. 1591-1595. · Zbl 0852.65055
[44] J. A. Sethian, {\it Fast marching methods}, SIAM Rev., 41 (1999), pp. 199-235. · Zbl 0926.65106
[45] V. Simoncini and E. Gallopoulos, {\it An iterative method for nonsymmetric systems with multiple right-hand sides}, SIAM J. Sci. Comput., 16 (1995), pp. 917-933. · Zbl 0831.65037
[46] E. Somersalo and J. Kaipio, {\it Statistical and computational inverse problems}, Appl. Math. Sci., 160 (2004). · Zbl 1068.65022
[47] A. Tarantola, {\it Inverse Problem Theory}, Elsevier, Amsterdam, 1987. · Zbl 0875.65001
[48] E. Treister and E. Haber, {\it A fast marching algorithm for the factored eikonal equation}, J. Comput. Phys., 324 (2016), pp. 210-225. · Zbl 1360.65266
[49] E. Treister and I. Yavneh, {\it Non-Galerkin multigrid based on sparsified smoothed aggregation}, SIAM J. Sci. Comput., 37 (2015), pp. A30-A54. · Zbl 1327.65264
[50] U. Trottenberg, C. Oosterlee, and A. Schüller, {\it Multigrid}, Academic, London, 2001. · Zbl 0976.65106
[51] H. A. Van der Vorst, {\it Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems}, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 631-644. · Zbl 0761.65023
[52] T. van Leeuwen and F. J. Herrmann, {\it Mitigating local minima in full-waveform inversion by expanding the search space}, Geophys. J. Int., 195 (2013), pp. 661-667.
[53] T. van Leeuwen and F. J. Herrmann, {\it 3D frequency-domain seismic inversion with controlled sloppiness}, SIAM J. Sci. Comput., 36 (2014), pp. S192-S217. · Zbl 1305.86008
[54] T. van Leeuwen and F. J. Herrmann, {\it A penalty method for PDE-constrained optimization in inverse problems}, Inverse. Probl., 32 (2016), p. 015007. · Zbl 1410.49029
[55] J. Virieux and S. Operto, {\it An overview of full-waveform inversion in exploration geophysics}, Geophysics, 74 (2009), pp. WCC1-WCC26.
[56] C. R. Vogel, {\it Computational Methods for Inverse Problems}, Vol. 23, SIAM, Philadelphia, 2002. · Zbl 1008.65103
[57] G. Wahba, {\it Spline Models for Observational Data}, SIAM, Philadelphia, 1990. · Zbl 0813.62001
[58] Y. Wang and R. G. Pratt, {\it Sensitivities of seismic traveltimes and amplitudes in reflection tomography}, Geophys. J. Int., 131 (1997), pp. 618-642.
[59] M. Warner, A. Ratcliffe, T. Nangoo, J. Morgan, A. Umpleby, N. Shah, V. Vinje, I. Štekl, L. Guasch, C. Win, et al., {\it Anisotropic \(3\) D full-waveform inversion}, Geophysics, 78 (2013), pp. R59-R80.
[60] I. Yavneh, {\it Why multigrid methods are so efficient}, Comput. Sci. Eng., 8, no. 6 (2006), pp. 12-22.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.