×

Diagonal form factors and hexagon form factors. II: Non-BPS light operator. (English) Zbl 1373.81330

Summary: We study the asymptotic volume dependence of the heavy-heavy-light three-point functions in the \( \mathcal{N}=4 \) Super-Yang-Mills theory using the hexagon bootstrap approach, where the volume is the length of the heavy operator. We extend the analysis of our previous short letter [ibid. 2016, No. 6, 120 (2016; doi:10.1007/JHEP07(2016)120)] to the general case where the heavy operators can be in any rank one sector and the light operator being a generic non-BPS operator. We prove the conjecture of Z. Bajnok et al. [ibid. 2014, No. 9, 50 (2014, doi:10.1007/JHEP09(2014)050)] up to leading finite size corrections.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
82B23 Exactly solvable models; Bethe ansatz
81T13 Yang-Mills and other gauge theories in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics

References:

[1] Y. Jiang and A. Petrovskii, Diagonal form factors and hexagon form factors, JHEP07 (2016) 120 [arXiv:1511.06199] [INSPIRE]. · Zbl 1390.81444 · doi:10.1007/JHEP07(2016)120
[2] Z. Bajnok, R.A. Janik and A. Wereszczyński, HHL correlators, orbit averaging and form factors, JHEP09 (2014) 050 [arXiv:1404.4556] [INSPIRE]. · Zbl 1392.81208 · doi:10.1007/JHEP09(2014)050
[3] F. Smirnov, Form-factors in completely integrable models of quantum field theory, Adv. Ser. Math. Phys.14 (1992) 1 [INSPIRE]. · Zbl 0788.46077 · doi:10.1142/9789812798312_0001
[4] K. Okuyama and L.-S. Tseng, Three-point functions in N = 4 SYM theory at one-loop, JHEP08 (2004) 055 [hep-th/0404190] [INSPIRE]. · doi:10.1088/1126-6708/2004/08/055
[5] L.F. Alday, J.R. David, E. Gava and K.S. Narain, Structure constants of planar N = 4 Yang-Mills at one loop, JHEP09 (2005) 070 [hep-th/0502186] [INSPIRE]. · doi:10.1088/1126-6708/2005/09/070
[6] R. Roiban and A. Volovich, Yang-Mills correlation functions from integrable spin chains, JHEP09 (2004) 032 [hep-th/0407140] [INSPIRE]. · doi:10.1088/1126-6708/2004/09/032
[7] J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and integrability, JHEP09 (2011) 028 [arXiv:1012.2475] [INSPIRE]. · Zbl 1301.81122 · doi:10.1007/JHEP09(2011)028
[8] N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and integrability III. Classical tunneling, JHEP07 (2012) 044 [arXiv:1111.2349] [INSPIRE]. · Zbl 1397.81146
[9] O. Foda, N = 4 SYM structure constants as determinants, JHEP03 (2012) 096 [arXiv:1111.4663] [INSPIRE]. · Zbl 1309.81155
[10] O. Foda and M. Wheeler, Partial domain wall partition functions, JHEP07 (2012) 186 [arXiv:1205.4400] [INSPIRE]. · Zbl 1397.81195 · doi:10.1007/JHEP07(2012)186
[11] I. Kostov, Classical limit of the three-point function of N = 4 supersymmetric Yang-Mills theory from integrability, Phys. Rev. Lett.108 (2012) 261604 [arXiv:1203.6180] [INSPIRE]. · doi:10.1103/PhysRevLett.108.261604
[12] I. Kostov, Three-point function of semiclassical states at weak coupling, J. Phys.A 45 (2012) 494018 [arXiv:1205.4412] [INSPIRE]. · Zbl 1260.81168
[13] E. Bettelheim and I. Kostov, Semi-classical analysis of the inner product of Bethe states, J. Phys.A 47 (2014) 245401 [arXiv:1403.0358] [INSPIRE]. · Zbl 1296.82019
[14] N. Gromov and P. Vieira, Quantum integrability for three-point functions of maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett.111 (2013) 211601 [arXiv:1202.4103] [INSPIRE]. · doi:10.1103/PhysRevLett.111.211601
[15] N. Gromov and P. Vieira, Tailoring three-point functions and integrability IV. Theta-morphism, JHEP04 (2014) 068 [arXiv:1205.5288] [INSPIRE]. · Zbl 1333.81246
[16] Y. Jiang, I. Kostov, F. Loebbert and D. Serban, Fixing the quantum three-point function, JHEP04 (2014) 019 [arXiv:1401.0384] [INSPIRE]. · doi:10.1007/JHEP04(2014)019
[17] O. Foda, Y. Jiang, I. Kostov and D. Serban, A tree-level 3-point function in the SU(3)-sector of planar N = 4 SYM, JHEP10 (2013) 138 [arXiv:1302.3539] [INSPIRE]. · doi:10.1007/JHEP10(2013)138
[18] P. Vieira and T. Wang, Tailoring non-compact spin chains, JHEP10 (2014) 35 [arXiv:1311.6404] [INSPIRE]. · doi:10.1007/JHEP10(2014)035
[19] J. Caetano and T. Fleury, Three-point functions and su(1|1) spin chains, JHEP09 (2014) 173 [arXiv:1404.4128] [INSPIRE]. · doi:10.1007/JHEP09(2014)173
[20] Y. Jiang, S. Komatsu, I. Kostov and D. Serban, The hexagon in the mirror: the three-point function in the SoV representation, J. Phys.A 49 (2016) 174007 [arXiv:1506.09088] [INSPIRE]. · Zbl 1342.82033
[21] E. Sobko, A new representation for two- and three-point correlators of operators from sl(2) sector, JHEP12 (2014) 101 [arXiv:1311.6957] [INSPIRE]. · doi:10.1007/JHEP12(2014)101
[22] R.A. Janik and A. Wereszczynski, Correlation functions of three heavy operators: the AdS contribution, JHEP12 (2011) 095 [arXiv:1109.6262] [INSPIRE]. · Zbl 1306.81116 · doi:10.1007/JHEP12(2011)095
[23] Y. Kazama and S. Komatsu, On holographic three point functions for GKP strings from integrability, JHEP01 (2012) 110 [Erratum ibid.06 (2012) 150] [arXiv:1110.3949] [INSPIRE]. · Zbl 1306.81253
[24] Y. Kazama and S. Komatsu, Wave functions and correlation functions for GKP strings from integrability, JHEP09 (2012) 022 [arXiv:1205.6060] [INSPIRE]. · Zbl 1306.81253 · doi:10.1007/JHEP09(2012)022
[25] Y. Kazama and S. Komatsu, Three-point functions in the SU(2) sector at strong coupling, JHEP03 (2014) 052 [arXiv:1312.3727] [INSPIRE]. · Zbl 1390.81393 · doi:10.1007/JHEP03(2014)052
[26] V. Kazakov and E. Sobko, Three-point correlators of twist-2 operators in N = 4 SYM at Born approximation, JHEP06 (2013) 061 [arXiv:1212.6563] [INSPIRE]. · Zbl 1342.81597 · doi:10.1007/JHEP06(2013)061
[27] I. Balitsky, V. Kazakov and E. Sobko, Structure constant of twist-2 light-ray operators in the Regge limit, Phys. Rev.D 93 (2016) 061701 [arXiv:1506.02038] [INSPIRE].
[28] I. Balitsky, V. Kazakov and E. Sobko, Three-point correlator of twist-2 light-ray operators in N = 4 SYM in BFKL approximation, arXiv:1511.03625 [INSPIRE]. · Zbl 1529.81079
[29] T. Bargheer, J.A. Minahan and R. Pereira, Computing three-point functions for short operators, JHEP03 (2014) 096 [arXiv:1311.7461] [INSPIRE]. · Zbl 1333.81230 · doi:10.1007/JHEP03(2014)096
[30] J.A. Minahan and R. Pereira, Three-point correlators from string amplitudes: mixing and Regge spins, JHEP04 (2015) 134 [arXiv:1410.4746] [INSPIRE]. · Zbl 1388.81587 · doi:10.1007/JHEP04(2015)134
[31] M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP12 (2012) 091 [arXiv:1209.4355] [INSPIRE]. · Zbl 1397.81297 · doi:10.1007/JHEP12(2012)091
[32] M.S. Costa, J. Drummond, V. Goncalves and J. Penedones, The role of leading twist operators in the Regge and Lorentzian OPE limits, JHEP04 (2014) 094 [arXiv:1311.4886] [INSPIRE]. · doi:10.1007/JHEP04(2014)094
[33] T. Klose and T. McLoughlin, Worldsheet form factors in AdS/CFT, Phys. Rev.D 87 (2013) 026004 [arXiv:1208.2020] [INSPIRE].
[34] Z. Bajnok and R.A. Janik, String field theory vertex from integrability, JHEP04 (2015) 042 [arXiv:1501.04533] [INSPIRE]. · Zbl 1388.81478 · doi:10.1007/JHEP04(2015)042
[35] Z. Bajnok and R.A. Janik, The kinematical AdS5× S5Neumann coefficient, JHEP02 (2016) 138 [arXiv:1512.01471] [INSPIRE]. · doi:10.1007/JHEP02(2016)138
[36] Y. Jiang, I. Kostov, A. Petrovskii and D. Serban, String bits and the spin vertex, Nucl. Phys.B 897 (2015) 374 [arXiv:1410.8860] [INSPIRE]. · Zbl 1329.81318 · doi:10.1016/j.nuclphysb.2015.05.029
[37] Y. Jiang and A. Petrovskii, From spin vertex to string vertex, JHEP06 (2015) 172 [arXiv:1412.2256] [INSPIRE]. · Zbl 1388.81554 · doi:10.1007/JHEP06(2015)172
[38] Y. Kazama, S. Komatsu and T. Nishimura, Novel construction and the monodromy relation for three-point functions at weak coupling, JHEP01 (2015) 095 [Erratum ibid.08 (2015) 145] [arXiv:1410.8533] [INSPIRE]. · Zbl 1390.81394
[39] B. Basso, S. Komatsu and P. Vieira, Structure constants and integrable bootstrap in planar N = 4 SYM theory, arXiv:1505.06745 [INSPIRE]. · Zbl 1397.81297
[40] B. Eden and A. Sfondrini, Three-point functions \[inN=4 \mathcal{N}=4\] SYM: the hexagon proposal at three loops, JHEP02 (2016) 165 [arXiv:1510.01242] [INSPIRE]. · Zbl 1388.81517 · doi:10.1007/JHEP02(2016)165
[41] B. Basso, V. Goncalves, S. Komatsu and P. Vieira, Gluing hexagons at three loops, Nucl. Phys.B 907 (2016) 695 [arXiv:1510.01683] [INSPIRE]. · Zbl 1336.81052 · doi:10.1016/j.nuclphysb.2016.04.020
[42] K. Zarembo, Holographic three-point functions of semiclassical states, JHEP09 (2010) 030 [arXiv:1008.1059] [INSPIRE]. · Zbl 1291.81273 · doi:10.1007/JHEP09(2010)030
[43] M.S. Costa, R. Monteiro, J.E. Santos and D. Zoakos, On three-point correlation functions in the gauge/gravity duality, JHEP11 (2010) 141 [arXiv:1008.1070] [INSPIRE]. · Zbl 1294.81186 · doi:10.1007/JHEP11(2010)141
[44] L. Hollo, Y. Jiang and A. Petrovskii, Diagonal form factors and heavy-heavy-light three-point functions at weak coupling, JHEP09 (2015) 125 [arXiv:1504.07133] [INSPIRE]. · doi:10.1007/JHEP09(2015)125
[45] B. Pozsgay and G. Takács, Form factors in finite volume. II. Disconnected terms and finite temperature correlators, Nucl. Phys.B 788 (2008) 209 [arXiv:0706.3605] [INSPIRE]. · Zbl 1220.81162
[46] A. Leclair and G. Mussardo, Finite temperature correlation functions in integrable QFT, Nucl. Phys.B 552 (1999) 624 [hep-th/9902075] [INSPIRE]. · Zbl 0951.81065 · doi:10.1016/S0550-3213(99)00280-1
[47] B. Pozsgay, Form factor approach to diagonal finite volume matrix elements in integrable QFT, JHEP07 (2013) 157 [arXiv:1305.3373] [INSPIRE]. · Zbl 1342.81649 · doi:10.1007/JHEP07(2013)157
[48] B. Pozsgay, I.M. Szecsenyi and G. Takács, Exact finite volume expectation values of local operators in excited states, JHEP04 (2015) 023 [arXiv:1412.8436] [INSPIRE]. · doi:10.1007/JHEP04(2015)023
[49] . Beisert, The analytic Bethe ansatz for a chain with centrally extended su(2|2) symmetry, J. Stat. Mech.01 (2007) P01017 [nlin/0610017]. · Zbl 1456.82226
[50] N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech.0701 (2007) P01021 [hep-th/0610251] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.