×

Metric on the space of quantum states from relative entropy. Tomographic reconstruction. (English) Zbl 1373.81041

Summary: In the framework of quantum information geometry, we derive, from quantum relative Tsallis entropy, a family of quantum metrics on the space of full rank, \(N\) level quantum states, by means of a suitably defined coordinate free differential calculus. The cases \(N=2\), \(N=3\) are discussed in detail and notable limits are analyzed. The radial limit procedure has been used to recover quantum metrics for lower rank states, such as pure states.

MSC:

81P16 Quantum state spaces, operational and probabilistic concepts
94A17 Measures of information, entropy
47L07 Convex sets and cones of operators
52A10 Convex sets in \(2\) dimensions (including convex curves)
81P45 Quantum information, communication, networks (quantum-theoretic aspects)

References:

[1] Wootters W K 1981 Statistical distance and Hilbert space Phys. Rev. D 23 357 · doi:10.1103/PhysRevD.23.357
[2] Facchi P, Kulkarni R, Man’ko V I, Marmo G, Sudarshan E C G and Ventriglia F 2010 Classical and quantum fisher information in the geometrical formulation of quantum mechanics Phys. Lett. A 374 4801 · Zbl 1238.81013 · doi:10.1016/j.physleta.2010.10.005
[3] Rao C R 1945 Information and the accuracy attainable in the estimation of statistical parameters Bull. Calcutta Math. Soc.37 81 · Zbl 0063.06420
[4] Dittmann J 1995 On the Riemannian metric on the space of density matrices Rep. Math. Phys.36 309-15 · Zbl 0886.53033 · doi:10.1016/0034-4877(96)83627-5
[5] Chentsov N N 1982 Statistical Decision Rules and Optimal Inference (Providence, RI: American Mathematical Society) · Zbl 0484.62008
[6] Bauer M, Bruveris M and Michor P 2016 Uniqueness of the Fisher-Rao metric on the space of smooth densities Bull. Lond. Math. Soc.48 499 · Zbl 1347.58001 · doi:10.1112/blms/bdw020
[7] Petz D 1996 Monotone metrics on matrix spaces Linear Algebra Appl.244 81-96 · Zbl 0856.15023 · doi:10.1016/0024-3795(94)00211-8
[8] Petz D and Sudar C S 1996 On the curvature of a certain Riemannian space of matrices J. Math. Phys.37 2662 · Zbl 0868.60098 · doi:10.1063/1.531535
[9] Laudato M, Marmo G, Mele F M, Ventriglia F and Vitale P 2017 Tomographic reconstruction of quantum metrics (arXiv:1704.01334 [math-ph])
[10] Amari S 1985 Differential-Geometric Methods in Statistics(Lecture Notes in Statistics vol 28) (New York: Springer) · Zbl 0559.62001 · doi:10.1007/978-1-4612-5056-2
[11] Amari S and Nagaoka H 2000 Methods of Information Geometry(Translations of Mathematical Monographs vol 191) (Providence, RI: American Mathematical Society) · Zbl 0960.62005
[12] Amari S 2016 Information Geometry and its Applications (New York: Springer) · Zbl 1350.94001 · doi:10.1007/978-4-431-55978-8
[13] Efron B 1975 Defining the curvature of a statistical problem Ann. Stat.3 1189 · Zbl 0321.62013 · doi:10.1214/aos/1176343282
[14] Grabowski J, Marmo G and Kus M 2005 Geometry of quantum systems: density states and entanglement J. Phys. A: Math. Gen.38 10217 · Zbl 1085.81017 · doi:10.1088/0305-4470/38/47/011
[15] Ibort A, Man’ko V I, Marmo G, Simoni A and Ventriglia F 2009 An introduction to the tomographic picture of quantum mechanics Phys. Scr.79 065013 · Zbl 1170.81007 · doi:10.1088/0031-8949/79/06/065013
[16] Ibort A, Manko V I, Marmo G, Simoni A and Ventriglia F 2011 A pedagogical presentation of a C∗-algebraic approach to quantum tomography Phys. Scr.84 065006 · Zbl 1263.81103 · doi:10.1088/0031-8949/84/06/065006
[17] Man’ko O V, Man’ko V I, Marmo G and Vitale P 2007 Star products, duality and double Lie algebras Phys. Lett. A 360 522 · Zbl 1236.81140 · doi:10.1016/j.physleta.2006.08.057
[18] Man’ko V I, Marmo G and Vitale P 2005 Phase space distributions and a duality symmetry for star products Phys. Lett. A 334 1 · Zbl 1123.53302 · doi:10.1016/j.physleta.2004.11.027
[19] Rosa L and Vitale P 2012 On the ⋆-product quantization and the Duflo map in three dimensions Mod. Phys. Lett. A 27 1250207 · Zbl 1260.81137 · doi:10.1142/S0217732312502070
[20] Nickerson H K, Spencer D C and Steenrod N E 2011 Advanced Calculus (New York: Dover)
[21] Takahashi K and Fujiwara A 2017 Information geometry of sandwiched Rényi α-divergence J. Phys. A: Math. Theor.50 165301 · Zbl 1366.81048 · doi:10.1088/1751-8121/aa6326
[22] Andai A 2003 Monotone Riemannian metrics on density matrices with non-monotone scalar curvature J. Math. Phys.44 3675 · Zbl 1062.81003 · doi:10.1063/1.1592874
[23] Schirmer S G, Zhang T and Leahy J V 2004 Orbits of quantum states and geometry of Bloch vectors for N-level systems J. Phys. A: Math. Gen.37 1389 · Zbl 1057.81067 · doi:10.1088/0305-4470/37/4/022
[24] Pistone G 2013 Non-parametric information geometry Geometric Science of Information(Lecture Notes in Computer Science vol 8085) ed F Nielsen and F Barbaresco (Berlin: Springer) p 5 · Zbl 1311.94023 · doi:10.1007/978-3-642-40020-9_3
[25] Grabowski J, Kus M and Marmo G 2006 Symmetries, group actions, and entanglement Open Sys. Inf. Dyn.13 343 · Zbl 1110.81044 · doi:10.1007/s11080-006-9013-3
[26] Petz D and Sudar C 1999 Extending the Fisher metric to density matrices Geometry in Present Days Science ed O E Barndorff-Nielsen and E B Vendel Jensen (Singapore: World Scientific)
[27] Sudar C 1996 Radial extension of mononone Riemannian metrics on density matrices Publ. Math. Debrecen49 243 · Zbl 0870.53055
[28] Ercolessi E and Schiavina M 2013 Symmetric logarithmic derivative for general n-level systems and the quantum Fisher information tensor for three-level systems Phys. Lett. A 377 1996 · Zbl 1297.81043 · doi:10.1016/j.physleta.2013.06.012
[29] Shivam K, Reddy A, Samuel J and Sinha S 2016 Entropy and geometry of quantum states (arXiv:1609.07279)
[30] Petz D 2002 Covariance and Fisher information in quantum mechanics J. Phys. A: Math. Gen.35 929 · Zbl 1168.81317 · doi:10.1088/0305-4470/35/4/305
[31] Dittmann J 1999 The scalar curvature of the Bures metric on the space of density matrices J. Geom. Phys.31 1624 · Zbl 0966.53014 · doi:10.1016/S0393-0440(98)00068-0
[32] Dittmann J and Uhlmann A 1999 Connections and metrics respecting standard purification J. Math. Phys.40 3246-67 · Zbl 0958.82003 · doi:10.1063/1.532884
[33] Dittmann J 2000 On the curvature of monotone metrics and a conjecture concerning the KuboMori metric Linear Algebr. Appl.315 83112 · Zbl 1031.53108 · doi:10.1016/S0024-3795(00)00130-0
[34] Gibilisco P and Isola T 2003 WignerYanase information on quantum state space: the geometric approach J. Math. Phys.44 3752 · Zbl 1062.81019 · doi:10.1063/1.1598279
[35] Gibilisco P and Isola T 2004 On the characterization of paired monotone metrics Ann. Inst. Stat. Math.56 369 · Zbl 1071.81021 · doi:10.1007/BF02530551
[36] Ercolessi E, Marmo G, Morandi G and Mukunda N 2001 Geometry of mixed states and degeneracy structure of geometric phases for multi-level quantum systems. A unitary group approach Int. J. Mod. Phys. A 16 5007 · Zbl 1026.81019 · doi:10.1142/S0217751X01005870
[37] Contreras I, Ercolessi E and Schiavina M 2016 On the geometry of mixed states and the Fisher information tensor J. Math. Phys.57 062209 · Zbl 1346.81018 · doi:10.1063/1.4954328
[38] Dodonov V V and Man’ko V I 1997 Positive distribution description for spin states Phys. Lett. A 229 335 · Zbl 1072.81531 · doi:10.1016/S0375-9601(97)00199-0
[39] Man’ko O V and Man’ko V I 1997 Spin state tomography J. Exp. Theor. Phys.85 430 · doi:10.1134/1.558326
[40] Man’ko O V, Man’ko V I and Marmo G 2000 Star-product of generalized WignerWeyl symbols on SU(2) group, deformations, and tomographic probability distribution Phys. Scr.62 446 · doi:10.1238/Physica.Regular.062a00446
[41] Asorey M, Ibort A, Marmo G and Ventriglia F 2015 Quantum tomography twenty years later Phys. Scr.90 074031 · doi:10.1088/0031-8949/90/7/074031
[42] Mancini S, Man’ko V I and Tombesi P 1996 Symplectic tomography as classical approach to quantum systems Phys. Lett. A 213 1 · Zbl 1073.81629 · doi:10.1016/0375-9601(96)00107-7
[43] Man’ko M A 2013 Joint probability distributions and conditional probabilities in the tomographic representation of quantum states Phys. Scr. T 153 014045 · doi:10.1088/0031-8949/2013/T153/014045
[44] Filippov S N and Man’ko V I 2010 Symmetric informationally complete positive operator valued measure and probability representation of quantum mechanics J. Russ. Laser Res.31 32 · doi:10.1007/s10946-010-9122-x
[45] Amiet J P and Weigert S J 2000 Discrete Q- and P-symbols for spin s J. Opt. B: Quantum Semiclass. Opt.2 118 · doi:10.1088/1464-4266/2/2/309
[46] Weigert S 2000 Quantum time evolution in terms of nonredundant probabilities Phys. Rev. Lett.84 802 · Zbl 0956.81007 · doi:10.1103/PhysRevLett.84.802
[47] Amiet J P and Weigert S J 1999 Reconstructing a pure state of a spin s through three Stern-Gerlach measurements J. Phys. A: Math. Gen.32 2777 · Zbl 0986.81007 · doi:10.1088/0305-4470/32/15/006
[48] Man’ko V I, Marmo G, Sudarshan E C G and Zaccaria F 2003 Entanglement structure of adjoint representation of unitary group and tomography of quantum states J. Russ. Laser Res.24 507 · doi:10.1023/B:JORR.0000004166.55179.aa
[49] Fujiwara A and Yamagata K 2016 Data processing for qubit state tomography: an information geometric approach (arXiv:1608.07983)
[50] Glushkov E, Glushkova A and Man V I 2015 Testing entropic inequalities for superconducting qudits J. Russ. Laser Res.36 448 · doi:10.1007/s10946-015-9522-z
[51] Kiktenko E O, Fedorov A K, Man’ko O V and Man’ko V I 2015 Multilevel superconducting circuits as two-qubit systems: Operations, state preparation, and entropic inequalities Phys. Rev. A 91 042312 · doi:10.1103/PhysRevA.91.042312
[52] Shalibo Y, Resh R, Fogel O, Shwa D, Bialczak R, Martinis J M and Katz N 2013 Direct Wigner tomography of a superconducting anharmonic oscillator Phys. Rev. Lett.110 100404 · doi:10.1103/PhysRevLett.110.100404
[53] Pashkin Y A, Yamamoto T, Astafiev O, Nakamura Y, Averin D V and Tsai J S 2003 Quantum oscillations in two coupled charge qubits Nature421 823 · doi:10.1038/nature01365
[54] Devoret M H and Schoelkopf R J 2013 Superconducting circuits for quantum information: an outlook Science339 1169 · doi:10.1126/science.1231930
[55] Dodonov V V, Manko O V and Manko V I 1989 J. Sov. Laser Res.10 413 · doi:10.1007/BF01120338
[56] Fujii T, Matsuo S, Hatakenaka N, Kurihara S and Zeilinger A 2011 Phys. Rev. B 84 174521 · doi:10.1103/PhysRevB.84.174521
[57] Manko O V 1994 J. Korean Phys. Soc.27 1
[58] Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland) · Zbl 0497.46053
[59] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) · Zbl 1049.81015
[60] Dodonov V V 2011 Comparing energy difference and fidelity of quantum states J. Russ. Las. Res.32 412 · doi:10.1007/s10946-011-9230-2
[61] Dodonov V V and Horovits M B 2012 How different can pure squeezed states with a given fidelity be? Phys. Scr. T 147 014009 · doi:10.1088/0031-8949/2012/T147/014009
[62] Dodonov V V 2012 Upper bounds on the relative energy difference of pure and mixed Gaussian states with a fixed fidelity J. Phys. A: Math. Theor.45 032002 · Zbl 1235.81012 · doi:10.1088/1751-8113/45/3/032002
[63] Mandarino A, Bina M, Porto C, Cialdi S, Olivares S and Paris M G A 2016 Assessing the significance of fidelity as a figure of merit in quantum state reconstruction of discrete and continuous-variable systems Phys. Rev. A 93 062118 · doi:10.1103/PhysRevA.93.062118
[64] Audenaert K M R and Datta N 2015 α-z-Rényi relative entropies J. Math. Phys.56 022202 · Zbl 1342.81061 · doi:10.1063/1.4906367
[65] Gibilisco P and Isola T 2001 A characterization of Wigner-Yanase skew information among statistically monotone metrics Infinite Dimensional Anal. Quantum Probab. Relat. Top.4 553 · Zbl 1041.81011 · doi:10.1142/S0219025701000644
[66] Cahill K E and Glauber R J 1969 Ordered expansions in Boson amplitude operators Phys. Rev.177 1857 · doi:10.1103/PhysRev.177.1857
[67] Cahill K E and Glauber R J 1969 Density operators and quasi-probability distributions Phys. Rev.177 1882 · doi:10.1103/PhysRev.177.1882
[68] Robertson H P 1930 A general formulation of the uncertainty principle and its classical interpretation Phys. Rev.35 667
[69] Schrödinger E 1930 Zum Heisenbergerschen Unschärfeprinzip (Berlin: Ber. Kgl. Akad. Wiss.) pp 296-303 · JFM 56.0754.05
[70] Felice D, Minh H Q and Mancini S 2017 The volume of Gaussian states by information geometry J. Math. Phys.58 012201 · Zbl 1355.81093 · doi:10.1063/1.4973507
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.