×

The scalar curvature of the Bures metric on the space of density matrices. (English) Zbl 0966.53014

The Riemannian Bures metric on the space of complex positive \(n\times n\) matrices \(D\) is defined by: \(g_Q(X,Y)= {1\over 2}TrXG\), where \(X,Y\in T_QD\) and \(G\) is the unique solution of equation \(QG+GQ=Y\).
The author determines the Ricci tensor and the scalar curvature of the Bures metric.
Reviewer: S.Noaghi (Deva)

MSC:

53B20 Local Riemannian geometry
53B50 Applications of local differential geometry to the sciences

References:

[1] Amari, S., Differential Geometric Methods in Statistics, (Lecture Notes in Statistics, vol. 28 (1985), Springer: Springer Berlin) · Zbl 0559.62001
[2] Bhatia, R.; Rosenthal, P., How and why to solve the operator equation AX − \( XB = Y\), Bull. London Math. Soc., 29, 1-21 (1997) · Zbl 0909.47011
[3] Braunstein, S. L.; Caves, C. M., Statistical distance and the geometry of quantum states, Phys. Rev. Lett., 72, 3439-3443 (1994) · Zbl 0973.81509
[4] Braunstein, S. L.; Caves, C. M.; Milburn, G. J., Generalized uncertainty relations: Theory, examples, and Lorentz invariance, Ann. Phys., 247, 135-173 (1996) · Zbl 0881.47046
[5] Dittmann, J., On the Riemannian geometry of finite dimensional mixed states, Sem. S. Lie, 3, 73-87 (1993) · Zbl 0780.53018
[6] Dittmann, J., Some properties of the Riemannian bures metric on mixed states, J. Geom. Phys., 13, 203-206 (1994) · Zbl 0791.53020
[7] J. Dittmann, Yang-Mills equation and Bures metric, Lett. Math. Phys., to appear.; J. Dittmann, Yang-Mills equation and Bures metric, Lett. Math. Phys., to appear. · Zbl 0939.53017
[8] J. Dittmann, Note on explicit formulae for the Bures metric, quant-ph/9808044.; J. Dittmann, Note on explicit formulae for the Bures metric, quant-ph/9808044. · Zbl 0971.81012
[9] J. Dittmann, A. Uhlmann, Connections and metrics respecting standard purification, quant-ph/9806028.; J. Dittmann, A. Uhlmann, Connections and metrics respecting standard purification, quant-ph/9806028. · Zbl 0958.82003
[10] Friedrich, T., Die Fisher-Information und Symplektische Strukturen, Math. Nachr., 153, 273-296 (1991) · Zbl 0792.62003
[11] Hiai, F.; Petz, D.; Toth, G., Curvature in the geometry of canonical correlation, Stud. Sci. Math. Hung., 32, 235-249 (1996) · Zbl 0862.53016
[12] Kobayashi, S.; Nomizu, K., (Foundations of Differential Geometry, vol. I (1963), Interscience: Interscience New York) · Zbl 0119.37502
[13] Gh.-S. Paraoanu, H. Scutaru, Bures distance between two displaced thermal states, quant-ph/9703051.; Gh.-S. Paraoanu, H. Scutaru, Bures distance between two displaced thermal states, quant-ph/9703051. · Zbl 1026.82522
[14] Petz, D., Monotone metrics on matrix spaces, Linear Algebra Appl., 244, 81-96 (1996) · Zbl 0856.15023
[15] Smith, R. A., Matrix calculations for Lyapunov quadratic forms, J. Differential Equations, 2, 208-217 (1966) · Zbl 0151.02206
[16] Twamley, J., Bures and statistical distance for squeezed thermal states, J. Phys. A, 29, 3723-3731 (1996) · Zbl 0899.47047
[17] Uhlmann, A., Parallel transport and quantum holonomy, Rep. Math. Phys., 24, 229-240 (1986) · Zbl 0644.46058
[18] Uhlmann, A., A gauge field governing parallel transport along mixed states, Lett. Math. Phys., 21, 229-236 (1991) · Zbl 0723.58052
[19] Uhlmann, A., The metric of Bures and the geometric phase, (Gielerak, R.; etal., Groups and Related Topics (1992), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht) · Zbl 0871.46042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.