×

HLLC-type Riemann solver with approximated two-phase contact for the computation of the Baer-Nunziato two-fluid model. (English) Zbl 1373.76136

Summary: The computation of compressible two-phase flows with the Baer-Nunziato model is addressed. Only the convective part of the model that exhibits non-conservative products is considered and the source terms of the model that represent the exchange between phases are neglected. Based on the solver proposed by S. A. Tokareva and E. F. Toro [ibid. 229, No. 10, 3573–3604 (2010; Zbl 1391.76440)], a new HLLC-type Riemann solver is built. The key idea of this new solver lies in an approximation of the two-phase contact discontinuity of the model. Thus the Riemann invariants of the wave are approximated in the “subsonic” case. A major consequence of this approximation is that the resulting solver can deal with any equation of state. It also allows to bypass the resolution of a nonlinear equation based on those Riemann invariants. We assess the solver and compare it with others on 1D Riemann problems including grid convergence and efficiency studies. The ability of the proposed solver to deal with complex equations of state is also investigated. Finally, the different solvers have been compared on challenging 2D test cases due to the presence of both material interfaces and shock waves: a shock-bubble interaction and underwater explosions. When compared with others, the present solver appears to be accurate, efficient and robust.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76N99 Compressible fluids and gas dynamics
35L40 First-order hyperbolic systems
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1391.76440

Software:

HLLE; HLLC
Full Text: DOI

References:

[1] Tokareva, S.; Toro, E., HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow, J. Comput. Phys., 229, 3573-3604 (2010) · Zbl 1391.76440
[2] Ishii, M., Thermo-Fluid Dynamic Theory of Two-Phase Flows, Collection de la Direction des Etudes et Recherches d’Electricité de France (1975) · Zbl 0325.76135
[3] Drew, D. A.; Passman, S. L., Theory of Multicomponent Fluids (1999), Springer Verlag
[4] Ransom, V. H.; Hicks, D. L., Hyperbolic two-pressure models for two-phase flow, J. Comput. Phys., 53, 124-151 (1984) · Zbl 0537.76070
[5] Baer, M.; Nunziato, J., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiph. Flow, 12, 861-889 (1986) · Zbl 0609.76114
[6] Glimm, J.; Saltz, D.; Sharp, D. H., Renormalization group solution of two-phase flow equations for Rayleigh-Taylor mixing, Phys. Lett. A, 222, 171-176 (1996) · Zbl 0972.76512
[7] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 425-467 (1999) · Zbl 0937.76053
[8] Gavrilyuk, S.; Saurel, R., Mathematical and numerical modeling of two-phase compressible flows with micro-inertia, J. Comput. Phys., 175, 326-360 (2002) · Zbl 1039.76067
[9] Coquel, F.; Gallouët, T.; Hérard, J.-M.; Seguin, N., Closure laws for a two-fluid two-pressure model, C. R. Math., 334, 927-932 (2002) · Zbl 0999.35057
[10] Gallouët, T.; Hérard, J.-M.; Seguin, N., Numerical modeling of two-phase flows using the two-fluid two-pressure approach, Math. Models Methods Appl. Sci., 14, 663-700 (2004) · Zbl 1177.76428
[11] Embid, P.; Baer, M., Mathematical analysis of a two-phase continuum mixture theory, Contin. Mech. Thermodyn., 4, 279-312 (1992) · Zbl 0760.76096
[12] Schwendeman, D. W.; Wahle, C. W.; Kapila, A. K., The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow, J. Comput. Phys., 212, 490-526 (2006) · Zbl 1161.76531
[13] Deledicque, V.; Papalexandris, M. V., An exact Riemann solver for compressible two-phase flow models containing non-conservative products, J. Comput. Phys., 222, 217-245 (2007) · Zbl 1216.76044
[14] Ambroso, A.; Chalons, C.; Raviart, P.-A., A Godunov-type method for the seven-equation model of compressible two-phase flow, Comput. Fluids, 54, 67-91 (2012) · Zbl 1291.76212
[15] Liang, S.; Liu, W.; Yuan, L., Solving seven-equation model for compressible two-phase flow using multiple GPUs, Comput. Fluids, 99, 156-171 (2014) · Zbl 1391.76425
[16] Furfaro, D.; Saurel, R., A simple HLLC-type Riemann solver for compressible non-equilibrium two-phase flows, Comput. Fluids, 111, 159-178 (2015) · Zbl 1410.76288
[17] Dumbser, M.; Toro, E. F., A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems, J. Sci. Comput., 48, 70-88 (2010) · Zbl 1220.65110
[18] Ambroso, A.; Chalons, C.; Coquel, F.; Galié, T., Relaxation and numerical approximation of a two-fluid two-pressure diphasic model, ESAIM: Math. Model. Numer. Anal., 43, 1063-1097 (2009) · Zbl 1422.76178
[19] Coquel, F.; Hérard, J.-M.; Saleh, K.; Seguin, N., A robust entropy-satisfying finite volume scheme for the isentropic Baer-Nunziato model, ESAIM: Math. Model. Numer. Anal., 48, 165-206 (2014) · Zbl 1286.76098
[20] Coquel, F.; Hérard, J.-M.; Saleh, K.; Seguin, N., A positive and entropy-satisfying finite volume scheme for the Baer-Nunziato model (2016), preprint
[21] Lochon, H.; Daude, F.; Galon, P.; Hérard, J.-M., Comparison of two-fluid models on steam-water transients, ESAIM: Math. Model. Numer. Anal. (2016) · Zbl 1373.76136
[22] Jin, H.; Glimm, J.; Sharp, D. H., Entropy of averaging for compressible two-pressure two-phase flow models, Phys. Lett. A, 360, 114-121 (2006) · Zbl 1236.76081
[23] Chinnayya, A.; Daniel, E.; Saurel, R., Modelling detonation waves in heterogeneous energetic materials, J. Comput. Phys., 196, 490-538 (2004) · Zbl 1109.76335
[24] Hérard, J.-M., A three-phase flow model, Math. Comput. Model., 45, 732-755 (2007) · Zbl 1165.76382
[25] Müller, S.; Hantke, M.; Richter, P., Closure conditions for non-equilibrium multi-component models, Contin. Mech. Thermodyn., 1-33 (2015)
[26] Andrianov, N.; Warnecke, G., The Riemann problem for the Baer-Nunziato two-phase flow model, J. Comput. Phys., 195, 434-464 (2004) · Zbl 1115.76414
[27] Daude, F.; Galon, P., On the computation of the Baer-Nunziato model using ALE formulation with HLL- and HLLC-type solvers towards fluid-structure interactions, J. Comput. Phys., 304, 189-230 (2016) · Zbl 1349.76320
[28] Dal Maso, G.; LeFloch, P. G.; Murat, F., Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74, 483-548 (1995) · Zbl 0853.35068
[29] Guillemaud, V., Modélisation et simulation numérique des écoulements diphasiques par une approche bifluide à deux pressions (2007), Université de Provence - Aix-Marseille I, Ph.D. thesis
[30] Harten, A.; Lax, P.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 35-61 (1983) · Zbl 0565.65051
[31] Batten, P.; Clarke, N.; Lambert, C.; Causon, D., On the choice of wavespeeds for the HLLC Riemann solver, SIAM J. Sci. Comput., 18, 1553-1570 (1997) · Zbl 0992.65088
[32] Toro, E. F.; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 4, 25-34 (1994) · Zbl 0811.76053
[33] Crouzet, F.; Daude, F.; Galon, P.; Helluy, P.; Hérard, J.-M.; Hurisse, O.; Liu, Y., Approximate solutions of the Baer-Nunziato model, ESAIM Proc., 40, 63-82 (2013) · Zbl 06509998
[34] Europlexus User’s Manual (2016), Joint Research Center (JRC), Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Technical report
[36] Haas, J.-F.; Sturtevant, B., Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, J. Fluid Mech., 181, 41-76 (1987)
[37] Kokh, S.; Lagoutière, F., An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model, J. Comput. Phys., 229, 2773-2809 (2010) · Zbl 1302.76129
[38] Kreeft, J. J.; Koren, B., A new formulation of Kapila’s five-equation model for compressible two-fluid flow, and its numerical treatment, J. Comput. Phys., 229, 6220-6242 (2010) · Zbl 1425.76216
[39] Grove, J. W.; Menikoff, R., Anomalous reflection of a shock wave at a fluid interface, J. Fluid Mech., 219, 313-336 (1990)
[40] Hérard, J.-M.; Hurisse, O., A fractional step method to compute a class of compressible gas-liquid flows, Comput. Fluids, 55, 57-69 (2012) · Zbl 1291.76217
[41] Crouzet, F.; Daude, F.; Galon, P.; Hérard, J.-M.; Hurisse, O.; Liu, Y., Validation of a two-fluid model on unsteady liquid-vapor water flows, Comput. Fluids, 119, 131-142 (2015) · Zbl 1390.76417
[42] Liu, T. G.; Khoo, B. C.; Yeo, K. S., The simulation of compressible multi-medium flow: II. Applications to 2D underwater shock refraction, Comput. Fluids, 30, 315-337 (2001) · Zbl 1052.76046
[43] Xie, W.; Liu, T.; Khoo, B., Application of a one-fluid model for large scale homogeneous unsteady cavitation: the modified Schmidt model, Comput. Fluids, 35, 1177-1192 (2006) · Zbl 1177.76437
[44] Ma, Z.; Causon, D.; Qian, L.; Gu, H.; Mingham, C.; Ferrer, P. M., A GPU based compressible multiphase hydrocode for modelling violent hydrodynamic impact problems, Comput. Fluids, 120, 1-23 (2015) · Zbl 1390.76486
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.