×

Induction effects of torus knots and unknots. (English) Zbl 1372.76112

Summary: Geometric and topological aspects associated with induction effects of field lines in the shape of torus knots/unknots are examined and discussed in detail. Knots are assumed to lie on a mathematical torus of circular cross-section and are parametrized by standard equations. The induced field is computed by direct integration of the Biot-Savart law. Field line patterns of the induced field are obtained and several properties are examined for a large family of knots/unknots up to 51 crossings. The intensity of the induced field at the origin of the reference system (center of the torus) is found to depend linearly on the number of toroidal coils and reaches maximum values near the boundary of the mathematical torus. New analytical estimates and bounds on energy and helicity are established in terms of winding number and minimum crossing number. These results find useful applications in several contexts when the source field is either vorticity, electric current or magnetic field, from vortex dynamics to astrophysics and plasma physics, where highly braided magnetic fields and currents are present.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
57M25 Knots and links in the \(3\)-sphere (MSC2010)

Software:

Mathematica

References:

[1] Aguirre J, Giné J and Peralta-Salas D 2008 Integrability of magnetic fields created by current distributions Nonlinearity21 51-69 · Zbl 1137.34021 · doi:10.1088/0951-7715/21/1/003
[2] Aguirre J and Peralta-Salas D 2007 Realistic examples of chaotic magnetic fields created by wires Europhys. Lett.80 60007 · doi:10.1209/0295-5075/80/60007
[3] Arrayás M, Bouwmeesterb D and Trueba J L 2017 Knots in electromagnetism Phys. Rep.667 1-61 · Zbl 1359.78002 · doi:10.1016/j.physrep.2016.11.001
[4] Ball J, Parra F I, Barnes M, Dorland W, Hammett G W, Rodrigues P and Loureiro N F 2014 Intrinsic momentum transport in up – down asymmetric tokamaks Plasma Phys. Control. Fusion56 095014 · doi:10.1088/0741-3335/56/9/095014
[5] Berger M A 1993 Energy-crossing number relations for braided magnetic fields Phys. Rev. Lett.70 705-8 · Zbl 1051.85502 · doi:10.1103/PhysRevLett.70.705
[6] Bray R J, Cram L E, Durrant C and Loughhead R E 2005 Plasma Loops in the Solar Corona (Cambridge: Cambridge University Press)
[7] Cirtain J W et al 2013 Energy release in the solar corona from spatially resolved magnetic braids Nature493 501-3 · doi:10.1038/nature11772
[8] Demoulin P, Pariat E and Berger M A 2006 Basic properties of mutual magnetic helicity Solar Phys.233 3-27 · doi:10.1007/s11207-006-0010-z
[9] Evans T E et al 2006 Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas Nat. Phys.2 419-23 · doi:10.1038/nphys312
[10] Freidberg J P 2007 Plasma Physics and Fusion Energy (Cambridge: Cambridge University Press) · doi:10.1017/CBO9780511755705
[11] Garabedian P R 2008 Three-dimensional analysis of tokamaks and stellarators Proc. Natl Acad. Sci. USA105 13716-9 · doi:10.1073/pnas.0806354105
[12] Harris J H 2004 Small to mid-sized stellarator experiments: topology, confinement and turbulence Plasma Phys. Control. Fusion46 B77-90 · doi:10.1088/0741-3335/46/12B/007
[13] Kedia H, Bialynicki-Birula I, Peralta-Salas D and Irvine W T M 2013 Tying knots in light fields Phys. Rev. Lett.111 150404 · doi:10.1103/PhysRevLett.111.150404
[14] Kleckner D and Irvine W T M 2013 Creation and dynamics of knotted vortices Nat. Phys.9 253-8 · doi:10.1038/nphys2560
[15] Kleckner D, Kauffman L H and Irvine W T M 2016 How superfluid vortex knots untie Nat. Phys.12 650-5 · doi:10.1038/nphys3679
[16] Maggioni F, Alamri S Z, Barenghi C F and Ricca R L 2010 Velocity, energy and helicity of vortex knots and unknots Phys. Rev. E 82 26309-17 · doi:10.1103/PhysRevE.82.026309
[17] Manuar O and Jaggard D L 2001 Knots, symmetry and scattering IEEE Trans. Antennas Propag.49 1299-304 · Zbl 1001.78010 · doi:10.1109/8.947021
[18] Massey W S 1967 Algebraic Topology. An Introduction (New York: Harcourt, Brace and World) · Zbl 0153.24901
[19] Miyaguchi T, Hosoda M, Imagawa K and Nakamura K 2011 Topology of magnetic field lines: chaos and bifurcations emerging from two-action systems Phys. Rev. E 83 016205 · doi:10.1103/PhysRevE.83.016205
[20] Moffatt H K 1969 The degree of knottedness of tangled vortex lines J. Fluid Mech.35 117-29 · Zbl 0159.57903 · doi:10.1017/S0022112069000991
[21] Moffatt H K and Ricca R L 1992 Helicity and the Călugăreanu invariant Proc. R. Soc. Lond. A 439 411-29 · Zbl 0771.57013 · doi:10.1098/rspa.1992.0159
[22] Murasugi K 1991 On the braid index of alternating links Trans. Am. Math. Soc.326 237-60 · Zbl 0751.57008 · doi:10.1090/S0002-9947-1991-1000333-3
[23] Oberti C and Ricca R L 2016 On torus knots and unknots J. Knot Theory Ramifications25 1650036 · Zbl 1341.57005 · doi:10.1142/S021821651650036X
[24] Oberti C and Ricca R L 2017 Energy and helicity of magnetic torus knots and braids Fluid Dyn. Res. (in press) (https://doi.org/10.1088/1873-7005/aa7bcc)
[25] Pontin D I, Candelaresi S, Russell A J B and Hornig G 2016 Braided magnetic fields: equilibria, relaxation and heating Plasma Phys. Control. Fusion58 054008 · doi:10.1088/0741-3335/58/5/054008
[26] Proment D, Onorato M and Barenghi C F 2012 Vortex knots in Bose-Einstein condensate Phys. Rev. E 85 1-8 · doi:10.1103/PhysRevE.85.036306
[27] Ricca R L 2013 New energy and helicity lower bounds for knotted and braided magnetic fields Geophys. Astrophys. Fluid Dyn.107 385-402 · Zbl 1521.76914 · doi:10.1080/03091929.2012.681782
[28] Rousculp C L and Stenzel R L 1997 Helicity injection by knotted antennas into electron magnetohydrodynamical plasmas Phys. Rev. Lett.79 837-40 · doi:10.1103/PhysRevLett.79.837
[29] Sarvas J 1987 Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem Phys. Med. Biol.32 11-22 · doi:10.1088/0031-9155/32/1/004
[30] Werner D H 1999 Radiation and scattering from thin toroidally knotted wires IEEE Trans. Antennas Propag.47 1351-63 · Zbl 0955.78002 · doi:10.1109/8.791955
[31] Wolfram Research 2010 Mathematica (Champaign, IL: Urbana-Champaign)
[32] Woltjer L 1958 A theorem on force-free magnetic fields Proc. Natl Acad. Sci. USA44 489-91 · Zbl 0081.21703 · doi:10.1073/pnas.44.6.489
[33] Xu Y 2016 A general comparison between tokamak and stellarator plasmas Matter Radiat. Extremes1 192-200 · doi:10.1016/j.mre.2016.07.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.