Skip to main content
Log in

Basic Properties of Mutual Magnetic Helicity

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We derive the magnetic helicity for configurations formed by flux tubes contained fully or only partially in the spatial domain considered (called closed and open configurations, respectively). In both cases, magnetic helicity is computed as the sum of mutual helicity over all possible pairs of magnetic flux tubes weighted by their magnetic fluxes. We emphasize that these mutual helicities have properties which are not those of mutual inductances in classical circuit theory. For closed configurations, the mutual helicity of two closed flux tubes is their relative winding around each other (known as the Gauss linkage number). For open configurations, the magnetic helicity is derived directly from the geometry of the interlaced flux tubes so it can be computed without reference to a ground state (such as a potential field). We derive the explicit expression in the case of a planar and spherical boundary. The magnetic helicity has two parts. The first one is given only by the relative positions of the flux tubes on the boundary. It is the only part if all flux tubes are arch-shaped. The second part counts the integer number of turns each pair of flux tubes wind about each other. This provides a general method to compute the magnetic helicity with discrete or continuous distributions of magnetic field. The method sets closed and open configurations on an equal level within the same theoretical framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger, M. A.: 1984, Geophys. Astrophys. Fluid Dyn. 30, 79

    ADS  Google Scholar 

  • Berger, M. A.: 1986, Geophys. Astrophys. Fluid Dyn. 34, 265

    MATH  Google Scholar 

  • Berger, M. A.: 2003, in A. Ferriz-Mas and M. Núñez (eds.), Advances in Nonlinear Dynamos, Gordon and Breach, London, p. 345.

    Google Scholar 

  • Berger, M. A. and Field, G. B.: 1984, J. Fluid. Mech. 147, 133

    ADS  MathSciNet  Google Scholar 

  • Berger, M. A.: 1999, Magnetic Helicity in Space and Laboratory Plasmas, Geophys. Monograph, Vol. 111, American Geophysical Union, p. 1.

  • Brandenburg, A.: 2001, Astrophys. J. 550, 824

    Article  ADS  Google Scholar 

  • Brown, M. R., Canfield, R. C., and Pevtsov, A. A. (eds.): 1999, Magnetic Helicity in Space and Laboratory Plasmas, Geophys. Monograph, Vol. 111, American Geophysical Union.

  • Chae, J., Moon, Y., and Park, Y.: 2004, Solar Phys. 223, 39

    Article  ADS  Google Scholar 

  • Conway, J. B.: 1975, Functions of One Complex Variable, Springer-Verlag, New York.

    Google Scholar 

  • Dasso, S., Mandrini, C. H., Démoulin, P., and Farrugia, C. J.: 2003, J. Geophys. Res. 108, 1362 (SSH 3,1 doi: 10.1029/2003JA009942).

    Google Scholar 

  • Démoulin, P., Mandrini, C. H., van Driel-Gesztelyi, L., Thompson, B. J., Plunkett, S., Kovári, Zs., Aulanier, G., and Young, A.: 2002, Astron. Astrophys. 382, 650

    Article  ADS  Google Scholar 

  • Elsasser, W. M.: 1956, Rev. Mod. Phys. 28, 135.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Finn, J. H. and Antonsen, T. M.: 1985, Comments Plasma Phys. Contr. Fusion 9, 111.

    Google Scholar 

  • Green, L. M., López Fuentes, M. C., Mandrini, C. H., Démoulin, P., van Driel-Gesztelyi, L., and Culhane, J. L.: 2002, Solar Phys. 208, 43

    Article  ADS  Google Scholar 

  • Heyvaerts, J. and Priest, E. R.: 1984, Astron. Astrophys. 137, 63

    ADS  Google Scholar 

  • Kimura, Y. and Okamoto, H.: 1987, J. Phys. Soc. Japan 56, 2024.

    MathSciNet  Google Scholar 

  • Kusano, K., Maeshiro, T., Yokoyama, T., and Sakurai, T.: 2002, Astrophys. J. 577, 501

    Article  ADS  Google Scholar 

  • Kusano, K., Maeshiro, T., Yokoyama, T., and Sakurai, T.: 2004, Astrophys. J. 610, 537

    Article  ADS  Google Scholar 

  • Low, B. C.: 1997, in N. Crooker, J. A. Joselyn, and J. Feynman (eds.), Coronal Mass Ejections, Geophys. Monograph, Vol. 99, American Geophysical Union, p. 39.

  • Mandrini, C. H., Pohjolainen, S., Dasso, S., Green, L. M, Démoulin, P., van Driel-Gesztelyi, L., Copperwheat, C., and Foley, C.: 2005, Astron. Astrophys. 434, 725

    Article  ADS  Google Scholar 

  • Melrose, D.: 2004, Solar Phys. 221, 121

    Article  ADS  Google Scholar 

  • Moffatt, H. K.: 1969, J. Fluid Mech. 35, 117.

    ADS  MATH  Google Scholar 

  • Nindos, A., Zhang, J., and Zhang, H.: 2003, Astrophys. J. 594, 1033

    Article  ADS  Google Scholar 

  • Pariat, E., Démoulin, P., and Berger, M. A.: 2005, Astron. Astrophys. 439, 1191

    Article  ADS  Google Scholar 

  • Rust, D. M.: 1994, Geophys. Res. Lett. 21, 241

    Article  ADS  Google Scholar 

  • Wright, A. N. and Berger, M. A.: 1988, J. Geophys. Res. 94A2, 1295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Pariat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demoulin, P., Pariat, E. & Berger, M.A. Basic Properties of Mutual Magnetic Helicity. Sol Phys 233, 3–27 (2006). https://doi.org/10.1007/s11207-006-0010-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-006-0010-z

Keywords

Navigation