×

Convergence of a second-order linearized BDF-IPDG for nonlinear parabolic equations with discontinuous coefficients. (English) Zbl 1372.65275

The numerical discretization of two-dimensional nonlinear parabolic interface problems is considered. The diffusion coefficient is considered to be discontinuous across the interface and moreover dependent on the unknown solution. The second-order backward difference formula (BDF) is used for the time discretization and the spatial discretization is treated with the anti-symmetric interior over-penalized discontinuous Galerkin (IPDG) finite element method. The optimal-order error estimates are proven based on the assumption of piecewise regular solution. The theoretical results are supported by the numerical results.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35K55 Nonlinear parabolic equations
35R05 PDEs with low regular coefficients and/or low regular data
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975) · Zbl 0314.46030
[2] Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742-760 (1982) · Zbl 0482.65060 · doi:10.1137/0719052
[3] Barrett, J.W., Elliott, C.M.: Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces. IMA J. Numer. Anal. 7, 283-300 (1987) · Zbl 0629.65118 · doi:10.1093/imanum/7.3.283
[4] Boyer, F., Hubert, F.: Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal. 46, 3032-3070 (2008) · Zbl 1180.35533 · doi:10.1137/060666196
[5] Bramble, J.H., King, J.T.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6, 109-138 (1996) · Zbl 0868.65081 · doi:10.1007/BF02127700
[6] Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2008) · Zbl 1135.65042 · doi:10.1007/978-0-387-75934-0
[7] Cao, Y., Gunzburger, M., Hua, F., Wang, X.: Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition. Commun. Math. Sci. 8, 1-25 (2010) · Zbl 1189.35244 · doi:10.4310/CMS.2010.v8.n1.a2
[8] Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79, 175-202 (1998) · Zbl 0909.65085 · doi:10.1007/s002110050336
[9] Collisa, J.M., Siegmann, W.L., Jensen, F.B., Zampolli, M., Ksel, E.T., Collins, M.D.: Parabolic equation solution of seismo-acoustics problems involving variations in bathymetry and sediment thickness. J. Acoust. Soc. Am. 123, 51-55 (2008) · doi:10.1121/1.2799932
[10] Dolejší, V., Vlasák, M.: Analysis of a BDF-DGFE scheme for nonlinear convection-diffusion problems. Numer. Math. 110, 405-447 (2008) · Zbl 1158.65068 · doi:10.1007/s00211-008-0178-2
[11] Gufan, Y., Masahiro, Y., Jin, C.: Heat transfer in composite materials with Stefan-Boltzmann interface conditions. Math. Methods Appl. Sci. 31, 1297-1314 (2008) · Zbl 1176.35091 · doi:10.1002/mma.971
[12] Gudi, T., Nataraj, N., Pani, A.K.: On \[L^2\] L2-error estimate for nonsymmetric interior penalty Galerkin approximation to linear elliptic problems with nonhomogeneous Dirichlet data. J. Comput. Appl. Math. 228(1), 30-40 (2009) · Zbl 1167.65061 · doi:10.1016/j.cam.2008.08.036
[13] Houston, P., Robson, J., Süli, E.: Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems I: the scalar case. IMA J. Numer. Anal. 25, 726-749 (2005) · Zbl 1084.65116 · doi:10.1093/imanum/dri014
[14] Kellogg, RB; Hubbard, B. (ed.), Singularities in interface problems, 351-400 (1971), New York · Zbl 0312.35009 · doi:10.1016/B978-0-12-358502-8.50015-3
[15] Kučera, V.: Optimal \[L^\infty (L^2)\] L∞(L2)-error estimates for the DG method applied to nonlinear convection-diffusion problems with nonlinear diffusion. Numer. Funct. Anal. Optim. 31, 285-312 (2010) · Zbl 1195.65118 · doi:10.1080/01630561003734917
[16] Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622-633 (2013) · Zbl 1281.65122
[17] Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959-1977 (2013) · Zbl 1311.76067 · doi:10.1137/120871821
[18] Li, Z.: A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. Anal. 35(1), 230-254 (1998) · Zbl 0915.65121 · doi:10.1137/S0036142995291329
[19] Li, Z., Lin, T., Wu, X.: New Cartesian grid methods for interface problem using finite element formulation. Numer. Math. 96, 61-98 (2003) · Zbl 1055.65130 · doi:10.1007/s00211-003-0473-x
[20] Lin, T., Lin, Y., Sun, W.: Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete Contin. Dyn. Syst. Ser. B 7, 807-823 (2007) · Zbl 1136.65102 · doi:10.3934/dcdsb.2007.7.807
[21] Mu, L., Wang, J., Wei, G.W., Ye, X., Zhao, S.: Weak Galerkin methods for second order elliptic interface problems. J. Comput. Phys. 250, 106-125 (2013) · Zbl 1349.65472 · doi:10.1016/j.jcp.2013.04.042
[22] Plum, M., Wieners, C.: Optimal a priori estimates for interface problems. Numer. Math. 95, 735-59 (2003) · Zbl 1041.65082 · doi:10.1007/s002110200395
[23] Sinha, R.K., Deka, B.: Optimal error estimates for linear parabolic problems with discontinuous coefficients. SIAM J. Numer. Anal. 43, 733-749 (2005) · Zbl 1094.65093 · doi:10.1137/040605357
[24] Sinha, R.K., Deka, B.: Finite element methods for semilinear elliptic and parabolic interface problems. Appl. Numer. Math. 59, 1870-1883 (2009) · Zbl 1172.65064 · doi:10.1016/j.apnum.2009.02.001
[25] Song, L., Zhang, Z.: Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems. Discrete Contin. Dyn. Syst. Ser. B 20, 1405-1426 (2015) · Zbl 1334.65185 · doi:10.3934/dcdsb.2015.20.1405
[26] Wang, H., Liang, D., Ewing, R.E., Lyons, S.L., Qin, Guan: An approximation to miscible fluid flows in porous media with point sources and sinks by an Eulerian-Lagrangian localized adjoint method and mixed finite element methods. SIAM J. Sci. Comput. 22, 561-581 (2006) · Zbl 0988.76054 · doi:10.1137/S1064827598349215
[27] Yang, C.: Convergence of a linearized second-order BDF-FEM for nonlinear parabolic interface problems. Comput. Math. Appl. 70, 265-281 (2015) · Zbl 1443.65229
[28] Zhang, Z., Yu, X.: Local discontinuous Galerkin method for nonlinear parabolic problems with discontinuous coefficients. Acta Math. Appl. Sin. 31, 453-466 (2015) · Zbl 1319.65101 · doi:10.1007/s10255-015-0479-z
[29] Z̆eníšek, A.: The finite element method for nonlinear elliptic equations with discontinuous coefficients. Numer. Math. 58, 51-77 (1990) · Zbl 0709.65081 · doi:10.1007/BF01385610
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.