×

Weak Galerkin methods for second order elliptic interface problems. (English) Zbl 1349.65472

Summary: Weak Galerkin methods refer to general finite element methods for partial differential equations (PDEs) in which differential operators are approximated by their weak forms as distributions. Such weak forms give rise to desirable flexibilities in enforcing boundary and interface conditions. A weak Galerkin finite element method (WG-FEM) is developed in this paper for solving elliptic PDEs with discontinuous coefficients and interfaces. Theoretically, it is proved that high order numerical schemes can be designed by using the WG-FEM with polynomials of high order on each element. Extensive numerical experiments have been carried out to validate the WG-FEM for solving second order elliptic interface problems. High order of convergence is numerically confirmed in both \(L_2\) and \(L_\infty\) norms for the piecewise linear WG-FEM. Special attention is paid to solve many interface problems, in which the solution possesses a certain singularity due to the nonsmoothness of the interface. A challenge in research is to design nearly second order numerical methods that work well for problems with low regularity in the solution. The best known numerical scheme in the literature is of order \(\mathcal{O}(h)\) to \(\mathcal{O}(h^{1.5})\) for the solution itself in \(L_\infty\) norm. It is demonstrated that the WG-FEM of the lowest order, i.e., the piecewise constant WG-FEM, is capable of delivering numerical approximations that are of order \(\mathcal{O}(h^{1.75})\) to \(\mathcal{O}(h^2)\) in the \(L_\infty\) norm for \(C^1\) or Lipschitz continuous interfaces associated with a \(C^1\) or \(H^2\) continuous solution.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35J15 Second-order elliptic equations

Software:

MIBPB

References:

[1] Babuška, I., The finite element method for elliptic equations with discontinuous coefficients, Computing, 5, 207-213 (1970) · Zbl 0199.50603
[2] Beale, J. T.; Layton, A. T., On the accuracy of finite difference methods for elliptic problems with interfaces, Commun. Appl. Math. Comput. Sci., 1, 91-119 (2006) · Zbl 1153.35319
[3] Bedrossian, J.; von Brecht, J. H.; Zhu, S. W.; Sifakis, E.; Teran, J. M., A finite element method for interface problems in domains with smooth boundaries and interfaces, J. Comput. Phys., 229, 6405-6426 (2010) · Zbl 1197.65168
[4] Bramble, J.; King, J., A finite element method for interface problems in domains with smooth boundaries and interfaces, Adv. Comput. Math., 6, 109-138 (1996) · Zbl 0868.65081
[5] Burman, E.; Hansbo, P., Interior-penalty-stabilized Lagrange multiplier methods for the finite-element solution of elliptic interface problems, SIAM J. Numer. Anal., 30, 870-885 (2010) · Zbl 1201.65204
[6] Cai, Z.; Ye, X.; Zhang, S., Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations, SIAM J. Numer. Anal., 49, 1761-1787 (2011) · Zbl 1232.65142
[7] Chen, D.; Chen, Z.; Chen, C.; Geng, W. H.; Wei, G. W., MIBPB: a software package for electrostatic analysis, J. Comput. Chem., 32, 657-670 (2011)
[8] Chen, T.; Strain, J., Piecewise-polynomial discretization and Krylov-accelerated multigrid for elliptic interface problems, J. Comput. Phys., 16, 7503-7542 (2008) · Zbl 1157.65064
[9] Dryjaa, M.; Galvisb, J.; Sarkisb, M., BDDC methods for discontinuous Galerkin discretization of elliptic problems, J. Complexity, 23, 715-739 (2007) · Zbl 1133.65097
[10] Ewing, R. E.; Li, Z. L.; Lin, T.; Lin, Y. P., The immersed finite volume element methods for the elliptic interface problems, Math. Comput. Simul., 50, 63-76 (1999) · Zbl 1027.65155
[11] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 457-492 (1999) · Zbl 0957.76052
[12] Geng, W. H.; Yu, S. N.; Wei, G. W., Treatment of charge singularities in implicit solvent models, J. Chem. Phys., 127, 114106 (2007)
[13] Glowinski, R.; Pan, T.-W.; Periaux, J., A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Eng., 111, 283-303 (1994) · Zbl 0845.73078
[14] Hadley, G. R., High-accuracy finite-difference equations for dielectric waveguide analysis I: uniform regions and dielectric interfaces, J. Lightwave Technol., 20, 1210-1218 (2002)
[15] Hansbo, A.; Hansbo, P., An unfitted finite element method, Comput. Methods Appl. Mech. Eng., 191, 5537-5552 (2002) · Zbl 1035.65125
[16] Harari, I.; Dolbow, J., Analysis of an efficient finite element method for embedded interface problems, Comput. Math., 46, 205-211 (2010) · Zbl 1190.65172
[17] He, X.; Lin, T.; Lin, Y., Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient, J. Syst. Sci. Complexity, 23, 467-483 (2010) · Zbl 1205.35010
[18] Hesthaven, J. S., High-order accurate methods in time-domain computational electromagnetics. a review, Adv. Imag. Electron Phys., 127, 59-123 (2003)
[19] Hiptmair, R.; Li, J.; Zou, J., Convergence analysis of finite element methods for H(div;Omega)-elliptic interface problems, J. Numer. Math., 18, 187-218 (2010) · Zbl 1203.65227
[20] Horikis, T. P.; Kath, W. L., Modal analysis of circular Bragg fibers with arbitrary index profiles, Opt. Lett., 31, 3417-3419 (2006)
[21] Hou, S. M.; Wang, W.; Wang, L. Q., Numerical method for solving matrix coefficient elliptic equation with sharp-edged interfaces, J. Comput. Phys., 229, 7162-7179 (2010) · Zbl 1197.65183
[22] Hou, T. Y.; Li, Z. L.; Osher, S.; Zhao, H. K., A hybrid method for moving interface problems with application to the Heleshaw flow, J. Comput. Phys., 134, 2, 236-252 (1997) · Zbl 0888.76067
[23] Layton, A. T., Using integral equations and the immersed interface method to solve immersed boundary problems with stiff forces, Comput. Fluids, 38, 266-272 (2009) · Zbl 1237.76123
[24] LeVeque, R. J.; Li, Z. L., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31, 1019-1044 (1994) · Zbl 0811.65083
[25] Mayo, A., The fast solution of Poisson’s and the biharmonic equations on irregular regions, SIAM J. Numer. Anal., 21, 285-299 (1984) · Zbl 1131.65303
[26] Mu, L.; Wang, J.; Wang, Y.; Ye, X., A computational study of the weak Galerkin method for the second-order elliptic equations, Numer. Algorithm (2012), http://dx.doi.org/10.1007/s11075-012-9651-1
[28] Oevermann, M.; Klein, R., A Cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces, J. Comput. Phys., 219, 749-769 (2006) · Zbl 1143.35022
[29] Peskin, C. S.; McQueen, D. M., A 3-dimensional computational method for blood-flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid, J. Comput. Phys., 81, 372-405 (1989) · Zbl 0668.76159
[30] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 3, 220-252 (1977) · Zbl 0403.76100
[31] Ramiere, I., Convergence analysis of the \(q_1\)-finite element method for elliptic problems with non-boundary-fitted meshes, Int. J. Numer. Methods Eng., 75, 1007-1052 (2008) · Zbl 1195.65154
[32] Raviart, P. A.; Thomas, J. M., A mixed finite element method for 2-nd order elliptic problems, (Dold, A.; Eckmann, B., Mathematical Aspects of Finite Element Methods. Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics Series, vol. 606 (1977), Springer: Springer Berlin), 92-315 · Zbl 0362.65089
[33] Wang, D. A.; Li, R.; Yan, N. N., An edge-based anisotropic mesh refinement algorithm and its application to interface problems, Commun. Comput. Phys., 8, 511-540 (2010) · Zbl 1364.65272
[34] Wang, J.; Ye, X., A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Mech., 241, 103-115 (2013) · Zbl 1261.65121
[35] Wang, X. S.; Zhang, L. T.; Kam, L. W., On computational issues of immersed finite element methods, J. Comput. Phys., 228, 2535-2551 (2009) · Zbl 1158.74049
[36] Xia, K. N.; Zhan, M.; Wei, G.-W., The matched interface and boundary (MIB) method for multi-domain elliptic interface problems, J. Comput. Phys., 230, 8231-8258 (2011)
[37] Yu, S. N.; Wei, G. W., Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities, J. Comput. Phys., 227, 602-632 (2007) · Zbl 1128.65103
[38] Yu, S. N.; Zhou, Y.; Wei, G. W., Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces, J. Comput. Phys., 224, 2, 729-756 (2007) · Zbl 1120.65333
[39] Yu, S. N.; Geng, W. H.; Wei, G. W., Treatment of geometric singularities in implicit solvent models, J. Chem. Phys., 126, 244108 (2007)
[40] Zhao, S., High order matched interface and boundary methods for the Helmholtz equation in media with arbitrarily curved interfaces, J. Comput. Phys., 229, 3155-3170 (2010) · Zbl 1187.78044
[41] Zhao, S.; Wei, G. W., High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces, J. Comput. Phys., 200, 1, 60-103 (2004) · Zbl 1050.78018
[42] Zhou, Y. C.; Wei, G. W., On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method, J. Comput. Phys., 219, 1, 228-246 (2006) · Zbl 1105.65108
[43] Zhou, Y. C.; Zhao, S.; Feig, M.; Wei, G. W., High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources, J. Comput. Phys., 213, 1, 1-30 (2006) · Zbl 1089.65117
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.