×

Obstacle problems and maximal operators. (English) Zbl 1372.47075

In this article, the authors exploit a close connection between the fully nonlinear equation \[ \min\{L_1 u, L_2 u\} = 0 \text{ in } \Omega, \;u= g \text{ on } \partial \Omega,\tag{1} \] and the obstacle problems for \(L_1\) and \(L_2\) respectively. Here, \(L_1, L_2\) are operators in a suitable class (e.g., they could be such that maximum principles are valid and continuity conditions hold for the coefficients). More precisely, the authors show that it is possible to construct solutions to (1) by an iterative procedure: Starting from a solution to \(L_1 u_1= 0\) in \(\Omega\), \(u_1=g\) on \(\partial \Omega\), for \(n\geq 2\) the authors define \(u_n\) as the solution to the obstacle problem for \(L_1\) if \(n\) is odd, and for \(L_2\) if \(n\) is even, with the constraint that \(u_n \geq u_{n-1}\). They show that in the limit \(n\rightarrow \infty\) this yields a viscosity solution to the fully nonlinear problem (1). Furthermore, various extensions, e.g., to parabolic operators and uncountable index sets, are discussed.

MSC:

47N20 Applications of operator theory to differential and integral equations
35R35 Free boundary problems for PDEs
35J70 Degenerate elliptic equations
49N70 Differential games and control
91A15 Stochastic games, stochastic differential games
91A24 Positional games (pursuit and evasion, etc.)

References:

[1] J. Andersson, E. Lindgren and H. Shahgholian, Optimal regularity for the obstacle problem for the p-Laplacian, preprint 2015, http://arxiv.org/abs/1402.4953.; Andersson, J.; Lindgren, E.; Shahgholian, H., Optimal regularity for the obstacle problem for the p-Laplacian (2015) · Zbl 1318.35051
[2] P. Blanc, J. P. Pinasco and J. D. Rossi, Maximal operators for the p-Laplacian family, preprint 2015, http://mate.dm.uba.ar/ jrossi/BlancPinascoRossi-sns.pdf.; Blanc, P.; Pinasco, J. P.; Rossi, J. D., Maximal operators for the p-Laplacian family (2015) · Zbl 1362.35143
[3] L. A. Caffarelli, The regularity of free boundaries in higher dimensions, Acta Math. 139 (1977), 3-4, 155-184.; Caffarelli, L. A., The regularity of free boundaries in higher dimensions, Acta Math., 139, 3-4, 155-184 (1977) · Zbl 0386.35046
[4] L. A. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl. 4 (1998), 4-5, 383-402.; Caffarelli, L. A., The obstacle problem revisited, J. Fourier Anal. Appl., 4, 4-5, 383-402 (1998) · Zbl 0928.49030
[5] L. A. Caffarelli and X. Cabre, Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloq. Publ. 43, American Mathematical Society, Providence, 1995.; Caffarelli, L. A.; Cabre, X., Fully Nonlinear Elliptic Equations (1995) · Zbl 0834.35002
[6] F. Charro, G. De Philippis, A. Di Castro and D. Máximo, On the Aleksandrov-Bakelman-Pucci estimate for the infinity Laplacian, Calc. Var. Partial Differential Equations 48 (2013), 3-4, 667-693.; Charro, F.; De Philippis, G.; Di Castro, A.; Máximo, D., On the Aleksandrov-Bakelman-Pucci estimate for the infinity Laplacian, Calc. Var. Partial Differential Equations, 48, 3-4, 667-693 (2013) · Zbl 1282.35163
[7] M. G. Crandall, H. Ishii and P. L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1-67.; Crandall, M. G.; Ishii, H.; Lions, P. L., User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27, 1-67 (1992) · Zbl 0755.35015
[8] P. Daskalopoulos and P. M. N. Feehan, \(C^{1,1}\) regularity for degenerate elliptic obstacle problems in mathematical finance, preprint 2016, http://arxiv.org/abs/1206.0831.; Daskalopoulos, P.; Feehan, P. M. N., \(C^{1,1}\) regularity for degenerate elliptic obstacle problems in mathematical finance (2016) · Zbl 1331.35143
[9] J. J. Manfredi, M. Parviainen and J. D. Rossi, On the definition and properties of p-harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), 215-241.; Manfredi, J. J.; Parviainen, M.; Rossi, J. D., On the definition and properties of p-harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11, 215-241 (2012) · Zbl 1252.91014
[10] Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. 22 (2009), 167-210.; Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, D., Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22, 167-210 (2009) · Zbl 1206.91002
[11] Y. Peres and S. Sheffield, Tug-of-war with noise: A game theoretic view of the p-Laplacian, Duke Math. J. 145 (2008), 1, 91-120.; Peres, Y.; Sheffield, S., Tug-of-war with noise: A game theoretic view of the p-Laplacian, Duke Math. J., 145, 1, 91-120 (2008) · Zbl 1206.35112
[12] A. Petrosyan, H. Shagholian and N. Uraltseva, Regularity of Free Boundaries in Obstacle Type Problems, American Mathematical Society, Providence, 2012.; Petrosyan, A.; Shagholian, H.; Uraltseva, N., Regularity of Free Boundaries in Obstacle Type Problems (2012) · Zbl 1254.35001
[13] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), 1, 67-112.; Silvestre, L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60, 1, 67-112 (2007) · Zbl 1141.49035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.