×

Improved Jacobi matrix method for the numerical solution of Fredholm integro-differential-difference equations. (English) Zbl 1371.65135

Summary: This study is aimed to develop a new matrix method, which is used an alternative numerical method to the other method for the high-order linear Fredholm integro-differential-difference equation with variable coefficients. This matrix method is based on orthogonal Jacobi polynomials and using collocation points. The improved Jacobi polynomial solution is obtained by summing up the basic Jacobi polynomial solution and the error estimation function. By comparing the results, it is shown that the improved Jacobi polynomial solution gives better results than the direct Jacobi polynomial solution, and also, than some other known methods. The advantage of this method is that Jacobi polynomials comprise all of the Legendre, Chebyshev, and Gegenbauer polynomials and, therefore, is the comprehensive polynomial solution technique.

MSC:

65R20 Numerical methods for integral equations
45B05 Fredholm integral equations
45J05 Integro-ordinary differential equations

Software:

Maple

References:

[1] Pcoolen-Schrijner, P., Van Doorn, E.A.: Analysis of random walks using orthogonal polynomials. J. Comput. Appl. Math. 99, 387-399 (1998) · Zbl 0930.60064 · doi:10.1016/S0377-0427(98)00172-1
[2] Fischer, B., Prestin, J.: Wavelets based on orthogonal polynomials. Math. Comp. 66, 1593-1618 (1997) · Zbl 0896.42020 · doi:10.1090/S0025-5718-97-00876-4
[3] El-Mikkawy, M.E.A., Cheon, G.S.: Combinatorial and hypergeometric identities via the Legendre polynomials—a computational approach. Appl. Math. Comput. 166, 181-195 (2005) · Zbl 1073.65019
[4] Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, Philadelphia (1978) · Zbl 0389.33008
[5] Szegö, G.: Orthogonal Polynomials, vol. 23. Amer Mathema Soci, Colloquium Publication, New York (1939) · JFM 65.0278.03
[6] Grümbaum, F.A.: Matrix valued Jacobi polynomials. Bull. Des. Sci. Math. 127, 207-214 (2003) · Zbl 1026.33008 · doi:10.1016/S0007-4497(03)00009-5
[7] Eslahchi, M.R., Dehghan, M.: Application of Taylor series in obtaining the orthogonal operational matrix. Comput. Math Appl. 61, 2596-2604 (2011) · Zbl 1221.33016 · doi:10.1016/j.camwa.2011.03.004
[8] Rose, M.E.: Elementary Theory of Angular Momentum. Wiley, Oxford (1957) · Zbl 0079.20102
[9] Bijker, R., et al.: Latin-American School of Physics: XXXV ELAF: Supersymmetry and Its Applications in Physics. AIP Conf. Series 744 (2004) · Zbl 0930.60064
[10] Weber, H.J.: A simple approach to Jacobi polynomials: Integ. Transf. Spec. Funct. 18, 217-221 (2007) · Zbl 1115.33010 · doi:10.1080/10652460701208569
[11] De, R., Dutt, R., Sukhatme, U.: Mapping of shape invariant potentials under point canonical transformations. J. Phys. A Math. Genet. 25, 843-850 (1992) · doi:10.1088/0305-4470/25/13/013
[12] Eslahchi, M.R., Dehghan, M., Ahmadi-Asl, S.: The general Jacobi matrix method for solving some nonlinear ordinary differential equations. Appl. Math. Model. 36, 3387-3398 (2012) · Zbl 1252.65121 · doi:10.1016/j.apm.2011.09.082
[13] Kalateh Bojdi, Z., Ahmadi-Asl, S., Aminataei, A.: The general shifted Jacobi matrix method for solving the general high order linear differential-difference equations with variable coefficients. J. Math. Res. Appl. 1, 10-23 (2013) · Zbl 1301.33014
[14] Kazem, S.: An integral operational matrix based on Jacobi polynomials for solving fractional-order differential equations. Appl. Math. Model. 37, 1126-1136 (2013) · Zbl 1351.34007 · doi:10.1016/j.apm.2012.03.033
[15] Bhrawy, A.H., Taha, M., José, A.T.M.: A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn. 81(3), 1023-1052 (2015) · Zbl 1348.65106 · doi:10.1007/s11071-015-2087-0
[16] Bhrawy, A.H: A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Num. Algorithms 1-23 (2015). doi:10.1007/s11075-015-0087-2 · Zbl 1348.65143
[17] Bhrawy, A.H., Alofi, A.S.: The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl. Math. Lett. 26(1), 25-31 (2013) · Zbl 1255.65147 · doi:10.1016/j.aml.2012.01.027
[18] Bhrawy, A.H., Ezz-Eldien, S.S.: A new Legendre operational technique for delay fractional optimal control problems. Calcolo 1-23 (2015). doi:10.1007/s10092-015-0160-1 · Zbl 1377.49032
[19] Bhrawy, A.H, et al.: A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations. Calcolo 1-17 (2015). doi:10.1007/s10092-014-0132-x · Zbl 1335.65083
[20] Bhrawy, A.H., Zaky, M.A., Van Gorder, R.A.: A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation. Numer. Algorithms 71(1), 151-180 (2016) · Zbl 1334.65166 · doi:10.1007/s11075-015-9990-9
[21] Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80(1-2), 101-116 (2015) · Zbl 1345.65060 · doi:10.1007/s11071-014-1854-7
[22] Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36(10), 4931-4943 (2012) · Zbl 1252.34019 · doi:10.1016/j.apm.2011.12.031
[23] Gülsu, M., Sezer, M.: Approximations to the solution of linear Fredholm integro differential-difference equation of high order. J. Franklin Inst. 343, 720-737 (2006) · Zbl 1113.65122 · doi:10.1016/j.jfranklin.2006.07.003
[24] Saadatmandi, A., Dehghan, M.: Numerical solution of the higher-order linear Fredholm integro-differential-difference equation with variable coefficients. Comput. Math Appl. 59, 2996-3004 (2010) · Zbl 1193.65229 · doi:10.1016/j.camwa.2010.02.018
[25] Dehghan, M., Saadatmandi, A.: Chebyshev finite difference method for Fredholm integro-differential equations. Int. J. Comput. Math. 85, 123-130 (2008) · Zbl 1131.65107 · doi:10.1080/00207160701405436
[26] Behirly, S.H., Hasnish, H.: Wavelet methods for the numerical solution of Fredholm integro-differential equations. Int. J. Appl. Math. 11, 27-36 (2002) · Zbl 1029.65146
[27] Şahin, N., Yüzbaşi, Ş., Sezer, M.: A Bessel polynomial approach for solving general linear Fredholm integro-differential-difference equations. Int. J. Comput. Math. 88, 3093-3111 (2011) · Zbl 1242.65288 · doi:10.1080/00207160.2011.584973
[28] Kurt, A., Yalçinbaş, S., Sezer, M.: Fibonacci collocation method for solving high-order linear Fredholm integro-differential-difference equations. Int. J. Math. Math. Sci.1-9 (2013). doi:10.1155/2013/486013 · Zbl 1286.65184
[29] Dehghan, M.: Solution of a partial integro-differential equation arising from viscoelasticity. Int. J. Comput. Math. 83, 123-129 (2006) · Zbl 1087.65119 · doi:10.1080/00207160500069847
[30] Kurt, N., Sezer, M.: Polynomial solution of high-order linear Fredholm integro-differential equations with constant coefficients. J. Franklin Inst. 345, 839-850 (2008) · Zbl 1202.65172 · doi:10.1016/j.jfranklin.2008.04.016
[31] Oliveira, F.A.: Collocation and residual correction. Numer. Math. 36, 27-31 (1980) · Zbl 0431.65056 · doi:10.1007/BF01395986
[32] Çelik, İ.: Collocation method and residual correction using Chebyshev series. Appl. Math. Comput. 174, 910-920 (2006) · Zbl 1090.65096
[33] Pour-Mahmoud, J., Rahimi-Ardabili, M.Y., Shahmorad, S.: Numerical solution of the system of Fredholm integro-differential equations by the Tau method. Appl. Math. Comput. 168, 465-478 (2005) · Zbl 1082.65600
[34] Shahmorad, S.: Numerical solution of the general form linear Fredholm-Volterra integro-differential equations by the Tau method with an error estimation. Appl. Math. Compt. 167, 1418-1429 (2005) · Zbl 1082.65602 · doi:10.1016/j.amc.2004.08.045
[35] Yüzbaşi, Ş., Sezer, M.: An improved Bessel collocation method with a residual error function to solve a class of Lane-Emden differential equations. Math. Comput. Model. 57, 1298-1311 (2013) · doi:10.1016/j.mcm.2012.10.032
[36] Yüzbaşi, Ş., Sezer, M., Kemanci, B.: Numerical solutions of integro-differential equations and application of a population model with an improved Legendre method. Appl. Math. Model. 37, 2086-2101 (2013) · Zbl 1349.65728 · doi:10.1016/j.apm.2012.05.012
[37] Wei, Y., Chen, Y.: Convergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutions. Adv. Appl. Math. Mech. 4, 1-20 (2012) · Zbl 1262.45005 · doi:10.4208/aamm.10-m1055
[38] Maple 11 User Manual, Waterloo Maple Inc. http://www.maplesoft.com/view.aspx?sl=5883 (2007). Accessed 1 Jun 2016 · Zbl 1073.65019
[39] Abdelkawy, M.A., Mohamed, A., Ezz-Eldien, S.S., Ahmad, Z.M.A.: A Jacobi spectral collocation scheme for solving Abel’s integral equations. Progr. Fract. Differ. Appl. 1(3), 1-14 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.