×

Polynomial solution of high-order linear Fredholm integro-differential equations with constant coefficients. (English) Zbl 1202.65172

Summary: A practical matrix method is presented to find an approximate solution of high-order linear Fredholm integro-differential equations with constant coefficients under the initial-boundary conditions in terms of Taylor polynomials. The method converts the integro-differential equation to a matrix equation, which corresponds to a system of linear algebraic equations. Error analysis and illustrative examples are included to demonstrate the validity and applicability of the technique.

MSC:

65R20 Numerical methods for integral equations
45J05 Integro-ordinary differential equations
45A05 Linear integral equations
Full Text: DOI

References:

[1] Yalcinbas, S.; Sezer, M., The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials, Appl. Math. Comput., 112, 291-308 (2000) · Zbl 1023.65147
[2] Ren, Y.; Zhang, B.; Qiao, H., A simple Taylor-series expansion method for a class of second kind integral equations, J. Comp. Appl. Math., 110, 15-24 (1999) · Zbl 0936.65146
[3] Maleknejad, K.; Mahmoudi, Y., Numerical solution of linear Fredholm integral equation by using hybrid Taylor and block-pulse functions, Appl. Math. Comput., 149, 799-806 (2004) · Zbl 1038.65147
[4] Rashed, M. T., Numerical solution of functional differential, integral and integro-differential equations, Appl. Numer. Math., 156, 485-492 (2004) · Zbl 1061.65146
[5] Wang, W.; Lin, C., A new algorithm for integral of trigonometric functions with mechanization, Appl. Math. Comput., 164, 1, 71-82 (2005) · Zbl 1069.65149
[6] Wang, W., An algorithm for solving the higher-order nonlinear Volterra-Fredholm integro-differential equation with mechanization, Appl. Math. Comput., 172, 1-23 (2006) · Zbl 1088.65118
[7] Delves, L. M.; Mohamed, J. L., Computational Methods for Integral Equations (1985), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0592.65093
[8] Ortiz, E. L.; Samara, L., An operational approach to the Tau method for the numerical solution of nonlinear differential equations, Computing, 27, 15-25 (1981) · Zbl 0449.65053
[9] Ortiz, E. L.; Aliabadi, M. H., Numerical treatment of moving and free boundary value problems with the Tau method, Comp. Math. Appl., 35, 8, 53-61 (1998) · Zbl 0999.65110
[10] Pour-Mahmoud, J.; Rahimi-Ardabili, M. Y.; Shahmorad, S., Numerical solution of the system of Fredholm integro-differential equations by the Tau method, Appl. Math. Comput., 168, 465-478 (2005) · Zbl 1082.65600
[11] Ortiz, E. L., On the numerical solution of nonlinear and functional differential equations with the Tau method, (Numerical Treatment of Differential Equations in Applications, Lecture Notes in Mathematics, vol. 679 (1978), Springer: Springer Berlin), 127-139 · Zbl 0387.65053
[12] Hosseini, S. M.; Shahmorad, S., A matrix formulation of the Tau method and Volterra linear integro-differential equations, Korean J. Comput. Appl. Math., 9, 2, 497-507 (2002) · Zbl 1005.65148
[13] Hosseini, S. M.; Shahmorad, S., Numerical solution of a class of integro-differential equations by the Tau method with an error estimation, Appl. Math. Comput., 136, 559-570 (2003) · Zbl 1027.65182
[14] Razzaghi, M.; Yousefi, S., Legendre wavelets method for the nonlinear Volterra Fredholm integral equations, Math. Comput. Simul., 70, 1-8 (2005) · Zbl 1205.65342
[15] Tavassoli Kajani, M.; Ghasemi, M.; Babolian, E., Numerical solution of linear integro-differential equation by using sine-cosine wavelets, Appl. Math. Comput., 180, 569-574 (2006) · Zbl 1102.65137
[16] Zhao, J.; Corless, R. M., Compact finite difference method for integro-differential equations, Appl. Math. Comput., 177, 271-288 (2006) · Zbl 1331.65180
[17] Maleknejad, K.; Mirzaee, F., Numerical solution of integro-differential equations by using rationalized Haar functions method, Kybernetes, Int. J. Syst. Math., 35, 1735-1744 (2006) · Zbl 1160.45303
[18] Stenger, F., Numerical Methods based on Sinc and Analytic Functions (1993), Springer: Springer New York · Zbl 0803.65141
[19] Farnoosh, R.; Ebrahimi, M., Monte Carlo method for solving Fredholm integral equations, Appl. Math. Comput. (2007) · Zbl 1124.65003
[20] Asady, B.; Tavassoli Kajani, M.; Hadi Vencheh, A.; Heydari, A., Solving second kind integral equations with hybrid Fourier and block-pulse functions, Appl. Math. Comput., 160, 14, 517-522 (2005) · Zbl 1063.65144
[21] Nas, S.; Yalçınbaş, S.; Sezer, M., A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations, Int. J. Math. Educ. Sci. Technol., 31, 2, 213-225 (2000) · Zbl 1018.65152
[22] Karamete, A.; Sezer, M., A Taylor collocation method for the solution of linear integro-differential equations, Int. J. Comput. Math., 79, 9, 987-1000 (2002) · Zbl 1006.65144
[23] Sezer, M.; Gulsu, M., Polynomial solution of the most general linear Fredholm integrodifferential-difference equation by means of Taylor matrix method, Int. J. Complex Variables, 50, 5, 367-382 (2005) · Zbl 1077.45006
[24] Gulsu, M.; Sezer, M., A method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomials, Int. J. Comput. Math., 82, 5, 629-642 (2005) · Zbl 1072.65164
[25] Golbabai, A.; javidi, M., Application of homotopy perturbation method for solving eighth-order boundary value problems, Appl. Math. Comput. (2007), 0.1016/j.amc. 2007. 02.091 · Zbl 1193.65148
[26] Kanwal, R. P.; Liu, K. C., A Taylor expansion approach for solving integral equations, Int. J. Math. Educ. Sci. Technol., 20, 3, 411-414 (1989) · Zbl 0683.45001
[27] Asady, B.; Kajani, M. T., Direct method for solving integro differential equations using hybrid Fourier and block-pulse functions, Int. J. Computer Math., 82, 7, 889-895 (2005) · Zbl 1075.65147
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.