×

Boundedness for a 3D chemotaxis-Stokes system with porous medium diffusion and tensor-valued chemotactic sensitivity. (English) Zbl 1371.35156

Summary: This paper deals with the following chemotaxis-Stokes system \[ \begin{cases} n_t+u\cdot \nabla n=\Delta n^m-\nabla \cdot (nS(x,n,c)\cdot \nabla c), \quad & x\in \Omega ,\,\, t>0,\\ c_t+u\cdot \nabla c=\Delta c-nf(c),\quad & x\in \Omega , \,\,t>0,\\ u_t=\Delta u+\nabla P+n\nabla \phi ,\quad & x\in \Omega , \,\,t>0,\\ \nabla \cdot u=0, \quad & x\in \Omega , \,\,t>0 \end{cases} \] under no-flux boundary conditions in a bounded domain \(\Omega \subset \mathbb {R}^{3}\) with smooth boundary, where \(m\geq 1\), \(\phi \in W^{1,\infty }(\Omega )\), \(f\) and \(S\) are given functions with values in \([0,\,\infty )\) and \(\mathbb {R}^{3\times 3}\), respectively. Here \(S\) satisfies \(|S(x,n,c)|<S_0(c)(1+n)^{-\alpha }\) with \(\alpha \geq 0\) and some nonnegative nondecreasing function \(S_0\). With the tensor-valued sensitivity \(S\), this system does not possess energy-type functionals which seem to be available only when \(S\) is a scalar function. We can establish a priori estimation to overcome this difficulty and explore a relationship between \(m\) and \(\alpha \), i.e., \(m+\alpha >\frac{7}{6}\), which insures the global existence of bounded weak solution. Our result covers completely and improves the recent result by X. Cao and Y. Wang [Discrete Contin. Dyn. Syst., Ser. B 20, No. 9, 3235–3254 (2015; Zbl 1322.35061)] which asserts, just in the case \(m=1\), the global existence of solutions, but without boundedness, and that by M. Winkler [Calc. Var. Partial Differ. Equ. 54, No. 4, Article ID 922, 3789–3828 (2015; Zbl 1333.35104)] which only involves the case of \(\alpha =0\) and requires the convexity of the domain.

MSC:

35K57 Reaction-diffusion equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35A01 Existence problems for PDEs: global existence, local existence, non-existence
92C17 Cell movement (chemotaxis, etc.)
35K65 Degenerate parabolic equations
Full Text: DOI

References:

[1] Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Towards a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663-1763 (2015) · Zbl 1326.35397 · doi:10.1142/S021820251550044X
[2] Cao, X., Ishida, S.: Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation. Nonlinearity 27, 1899-1913 (2014) · Zbl 1301.35056 · doi:10.1088/0951-7715/27/8/1899
[3] Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. J. Differ. Equ. 252, 5832-5851 (2012) · Zbl 1252.35087 · doi:10.1016/j.jde.2012.01.045
[4] Cieślak, T., Stinner, C.: New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models. J. Differ. Equ. 258, 2080-2113 (2015) · Zbl 1331.35041 · doi:10.1016/j.jde.2014.12.004
[5] Chae, M., Kang, K., Lee, J.: Existence of smooth solutions to coupled chemotaxis-fluid equations. Discrete Contin. Dyn. Syst. Ser. A 33, 2271-2297 (2013) · Zbl 1277.35276 · doi:10.3934/dcds.2013.33.2271
[6] Chae, M., Kang, K., Lee, J.: Global Existence and temporal decay in Keller-Segel models coupled to fluid equations. Commun. Partial Differ. Equ. 39, 1205-1235 (2014) · Zbl 1304.35481 · doi:10.1080/03605302.2013.852224
[7] Duan, R., Lorz, A., Markowich, P.A.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Partial Differ. Equ. 35, 1635-1673 (2010) · Zbl 1275.35005 · doi:10.1080/03605302.2010.497199
[8] Duan, R., Xiang, Z.: A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion. Int. Math. Res. Not. 2014, 1833-1852 (2014) · Zbl 1323.35184
[9] Di Francesco, M., Lorz, A., Markowich, P.A.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. Ser. A 28, 1437-1453 (2010) · Zbl 1276.35103 · doi:10.3934/dcds.2010.28.1437
[10] Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O.: Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103-1-4 (2004) · doi:10.1103/PhysRevLett.93.098103
[11] Ishida, S.: Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete Contin. Dyn. Syst. Ser. A 35, 3463-3482 (2015) · Zbl 1308.35214 · doi:10.3934/dcds.2015.35.3463
[12] Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Differ. Equ. 256, 2993-3010 (2014) · Zbl 1295.35252 · doi:10.1016/j.jde.2014.01.028
[13] Lin, K., Mu, C., Gao, Y.: Boundedness and blow up in the higher-dimensional attraction-repulsion chemotaxis system with nonlinear diffusion. J. Differ. Equ. 261, 4524-4572 (2016) · Zbl 1347.35047 · doi:10.1016/j.jde.2016.07.002
[14] Li, X., Xiang, Z.: On an attraction-repulsion chemotaxis system with a logistic source. IMA J. Appl. Math. 81, 165-198 (2016) · Zbl 1336.35338
[15] Li, T., Suen, A., Winkler, M., Xue, C.: Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms. Math. Models Methods Appl. Sci. 25, 721-746 (2015) · Zbl 1322.35054 · doi:10.1142/S0218202515500177
[16] Liu, J., Lorz, A.: A coupled chemotaxis-fluid model: global existence. Ann. Inst. Henri Poincaré Anal. Non Linéaire 28, 643-652 (2011) · Zbl 1236.92013 · doi:10.1016/j.anihpc.2011.04.005
[17] Lorz, A.: Coupled chemotaxis fluid equations. Math. Models Methods Appl. Sci. 20, 987-1004 (2010) · Zbl 1191.92004 · doi:10.1142/S0218202510004507
[18] Painter, K., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10, 501-543 (2002) · Zbl 1057.92013
[19] Sohr, H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhǎuser, Basel (2001) · Zbl 0983.35004 · doi:10.1007/978-3-0348-0551-3
[20] Tao, Y., Winkler, M.: A chemotaxis-haptotaxis model: the roles of nonlinear diffusion and logistic source. SIAM J. Math. Anal. 43, 685-704 (2011) · Zbl 1259.35210 · doi:10.1137/100802943
[21] Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692-715 (2012) · Zbl 1382.35127 · doi:10.1016/j.jde.2011.08.019
[22] Tao, Y., Winkler, M.: Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Ann. Inst. Henri Poincaré Anal. Non Linéaire 30, 157-178 (2013) · Zbl 1283.35154 · doi:10.1016/j.anihpc.2012.07.002
[23] Tao, Y., Winkler, M.: Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion. Discrete Contin. Dyn. Syst. Ser. A 32, 1901-1914 (2012) · Zbl 1276.35105 · doi:10.3934/dcds.2012.32.1901
[24] Tao, Y., Winkler, M.: Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 252, 2520-2543 (2012) · Zbl 1268.35016 · doi:10.1016/j.jde.2011.07.010
[25] Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. Studied in Mathematics and its Applications, vol. 2. North-holland, Amsterdam (1977) · Zbl 0383.35057
[26] Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102, 2277-2282 (2005) · Zbl 1277.35332 · doi:10.1073/pnas.0406724102
[27] Velázquez, J.J.: Point dynamics in a singular limit of the Keller-Segel model 1: motion of the concentration regions. SIAM J. Appl. Math. 64, 1198-1223 (2004) · Zbl 1058.35021 · doi:10.1137/S0036139903433888
[28] Wang, Y.: Global bounded weak solutions to a degenerate quasilinear chemotaxis system with rotation. Math. Methods Appl. Sci. 39, 1159-1175 (2016) · Zbl 1335.35107 · doi:10.1002/mma.3561
[29] Wang, Y.: A quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type with logistic source. J. Math. Anal. Appl. 441, 259-292 (2016) · Zbl 1338.35057 · doi:10.1016/j.jmaa.2016.03.061
[30] Wang, Y., Cao, X.: Global classical solutions of a 3D chemotaxis-Stokes system with rotation. Discrete Contin. Dyn. Syst. Ser. B 20, 3235-3254 (2015) · Zbl 1322.35061 · doi:10.3934/dcdsb.2015.20.3235
[31] Wang, Y., Xiang, Z.: Global existence and boundedness in a higher-dimensional quasilinear chemotaxis system. Z. Angew. Math. Phys. 66, 3159-3179 (2015) · Zbl 1330.35201 · doi:10.1007/s00033-015-0557-3
[32] Wang, Y.: Global existence and boundedness in a quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type. Bound. Value Probl. 2016, 1-22 (2016) · Zbl 1330.47098 · doi:10.1186/s13661-015-0477-3
[33] Winkler, M.: Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319-351 (2012) · Zbl 1236.35192 · doi:10.1080/03605302.2011.591865
[34] Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system. Ann. Inst. Henri Poincaré Anal. Non Linéaire 33, 1329-1352 (2016) · Zbl 1351.35239 · doi:10.1016/j.anihpc.2015.05.002
[35] Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier-Stokes system. Arch. Ration. Mech. Anal. 211, 455-487 (2014) · Zbl 1293.35220 · doi:10.1007/s00205-013-0678-9
[36] Winkler, M.: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J. Math. Anal. 47, 3092-3115 (2015) · Zbl 1330.35202 · doi:10.1137/140979708
[37] Winkler, M.: Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Var. Partial Differ. Equ. 54, 3789-3828 (2015) · Zbl 1333.35104 · doi:10.1007/s00526-015-0922-2
[38] Winkler, M.: A two-dimensional chemotaxis-Stokes system with rotational flux: global solvability, eventual smoothness and stabilization, preprint · Zbl 1252.35087
[39] Winkler, M.: Does a “volume-filling” effect always prevent chemotactic collapse? Math. Methods Appl. Sci. 33, 12-24 (2010) · Zbl 1182.35220
[40] Xue, C.: Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. J. Math. Biol. 70, 1-44 (2015) · Zbl 1375.92012 · doi:10.1007/s00285-013-0748-5
[41] Xue, C., Othmer, H.G.: Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math. 70, 133-167 (2009) · Zbl 1184.35308 · doi:10.1137/070711505
[42] Zhang, Q., Zheng, X.: Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations. SIAM J. Math. Anal. 46, 3078-3105 (2014) · Zbl 1444.35011 · doi:10.1137/130936920
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.