×

Negative index materials and their applications: recent mathematics progress. (English) Zbl 1371.35036

Summary: Negative index materials are artificial structures whose refractive index has negative value over some frequency range. These materials were first investigated theoretically by Veselago in 1946 and were confirmed experimentally by Shelby, Smith, and Schultz in 2001. Mathematically, the study of negative index materials faces two difficulties. Firstly, the equations describing the phenomenon have sign changing coefficients, hence the ellipticity and the compactness are lost in general. Secondly, the localized resonance, i.e., the field explodes in some regions and remains bounded in some others as the loss goes to 0, might appear. In this survey, the author discusses recent mathematics progress in understanding properties of negative index materials and their applications. The topics are reflecting complementary media, superlensing and cloaking by using complementary media, cloaking a source via anomalous localized resonance, the limiting absorption principle and the well-posedness of the Helmholtz equation with sign changing coefficients.

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35B34 Resonance in context of PDEs
35B35 Stability in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
78A25 Electromagnetic theory (general)
35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations

References:

[1] Agmon, S., Douglis, A. and Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math., 17, 1964, 35-92. · Zbl 0123.28706 · doi:10.1002/cpa.3160170104
[2] Ammari, H., Ciraolo, G., Kang, H., et. al., Anomalous localized resonance using a folded geometry in three dimensions, Proc. R. Soc. Lond. Ser. A, 469, 2013, 20130048. · Zbl 1348.78006 · doi:10.1098/rspa.2013.0048
[3] Ammari, H., Ciraolo, G., Kang, H., et. al., Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Rational Mech. Anal., 218, 2013, 667-692. · Zbl 1282.78004 · doi:10.1007/s00205-012-0605-5
[4] Bethuel, F., Brezis, H. and Helein, F., Ginzburg Landau vortices, Progress in Nonlinear Differential Equations and Their Applications., 13, Birkhäuser, Boston, 1994. · Zbl 0802.35142
[5] Bonnet-Ben Dhia, A. S., Chesnel, L. and Ciarlet, P., T-coercivity for scalar interface problems between dielectrics and metamaterials, ESAIM Math. Model. Numer. Anal., 46, 2012, 1363-1387. · Zbl 1276.78008 · doi:10.1051/m2an/2012006
[6] Bonnet-Ben Dhia, A. S., Chesnel, L. and Ciarlet, P., T-coercivity for the Maxwell problem with signchanging coefficients, Comm. Partial Differential Equations, 39, 2014, 1007-1031. · Zbl 1297.35229 · doi:10.1080/03605302.2014.892128
[7] Bonnet-Ben Dhia, A. S., Ciarlet, P. and Zwölf, C. M., Two-and three-field formulations for wave transmission between media with opposite sign dielectric constants, J. Comput. Appl. Math., 204, 2007, 408-417. · Zbl 1136.78003 · doi:10.1016/j.cam.2006.01.046
[8] Bonnet-Ben Dhia, A. S., Ciarlet, P. and Zwölf, C. M., A new compactness result for electromagnetic waves. Application to the transmission problem between dielectrics and metamaterials, Math. Models Methods Appl. Sci., 18, 2008, 1605-1631. · Zbl 1173.35119 · doi:10.1142/S0218202508003145
[9] Bonnet-Ben Dhia, A. S., Ciarlet, P. and Zwölf, C. M., Time harmonic wave diffraction problems in materials with sign-shifting coefficients, J. Comput. Appl. Math., 234, 2010, 1912-1919. · Zbl 1202.78026 · doi:10.1016/j.cam.2009.08.041
[10] Bouchitté, G. and Felbacq, D., Homogenization near resonances and artificial magnetism from dielectrics, C. R. Math. Acad. Sci. Paris, 339, 2004, 377-382. · Zbl 1055.35016 · doi:10.1016/j.crma.2004.06.018
[11] Bouchitté, G. and Schweizer, B., Cloaking of small objects by anomalous localized resonance, Quart. J. Mech. Appl. Math., 63, 2010, 437-463. · Zbl 1241.78001 · doi:10.1093/qjmam/hbq008
[12] Bouchitté, G. and Schweizer, B., Homogenization of Maxwell’s equations in a split ring geometry, Multiscale Model. Simul., 8, 2010, 717-750. · Zbl 1228.35028 · doi:10.1137/09074557X
[13] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universititex, Springer-Verlag, New York, 2010. · Zbl 1220.46002 · doi:10.1007/978-0-387-70914-7
[14] Bruno, O. P. and Lintner, S., Superlens-cloaking of small dielectric bodies in the quasistatic regime, J. Appl. Phys., 102, 2007, 12452. · doi:10.1063/1.2821759
[15] Costabel, M. and Stephan, E., A direct boundary integral equation method for transmission problems, J. Math. Anal. Appl., 106, 1985, 367-413. · Zbl 0597.35021 · doi:10.1016/0022-247X(85)90118-0
[16] Guenneau, S. and Zolla, F., Homogenization of 3d finite chiral photonic crystals, Physica B: Condens. Matter, 394, 2007, 145-147. · Zbl 1191.78046 · doi:10.1016/j.physb.2006.12.021
[17] Kettunen, H., Lassas, M. and Ola, P., On absence and existence of the anomalous localized resonance without the quasi-static approximation. http://arxiv.org/abs/1406.6224 · Zbl 1401.35033
[18] Kohn, R. V., Lu, J., Schweizer, B. and Weinstein, M. I., A variational perspective on cloaking by anomalous localized resonance, Comm. Math. Phys., 328, 2014, 1-27. · Zbl 1366.78002 · doi:10.1007/s00220-014-1943-y
[19] Kohn, R. V., Onofrei, D., Vogelius, M. S. and Weinstein, M. I., Cloaking via change of variables for the Helmholtz equation, Comm. Pure Appl. Math., 63, 2010, 973-1016. · Zbl 1194.35505
[20] Kohn, R. V. and Shipman, S. P., Magnetism and homogenization of microresonators, Multiscale Model. Simul., 7, 2008, 62-92. · Zbl 1159.78350 · doi:10.1137/070699226
[21] Lai, Y., Chen, H., Zhang, Z. and Chan, C. T., Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell, Phys. Rev. Lett., 102, 2009, 093901. · doi:10.1103/PhysRevLett.102.093901
[22] Milton, G. W., Nicorovici, N. A., McPhedran, R. C. and Podolskiy, V. A., A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance, Proc. R. Soc. Lond. Ser. A, 461, 2005, 3999-4034. · Zbl 1255.78002 · doi:10.1098/rspa.2005.1570
[23] Milton, G. W. and Nicorovici, N. A. P., On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. Lond. Ser. A, 462, 2006, 3027-3059. · Zbl 1149.00310 · doi:10.1098/rspa.2006.1715
[24] Milton, G. W., Nicorovici, N. P., McPhedran, R. C., et. al., Solutions in folded geometries, and associated cloaking due to anomalous resonance, New J. Phys., 10, 2008, 115021.
[25] Nguyen, H.-M., Cloaking via change of variables for the Helmholtz Equation in the whole space, Comm. Pure Appl. Math., 63, 2010, 1505-1524. · Zbl 1206.35259 · doi:10.1002/cpa.20333
[26] Nguyen, H.-M., Approximate cloaking for the Helmholtz equation via transformation optics and consequences for perfect cloaking, Comm. Pure Appl. Math., 65, 2012, 155-186. · Zbl 1231.35310 · doi:10.1002/cpa.20392
[27] Nguyen, H.-M., Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients, Trans. Amer. Math. Soc., 367, 2015, 6581-6595. · Zbl 1321.35012 · doi:10.1090/S0002-9947-2014-06305-8
[28] Nguyen, H.-M., Superlensing using complementary media, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32, 2015, 471-484. · Zbl 1316.35275 · doi:10.1016/j.anihpc.2014.01.004
[29] Nguyen, H.-M., Cloaking via anomalous localized resonance, a connection between the localized resonance and the blow up of the power for doubly complementary media, C. R. Math. Acad. Sci. Paris, 353, 2015, 41-46. · Zbl 1368.78057 · doi:10.1016/j.crma.2014.10.014
[30] Nguyen, H.-M., Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime, J. Eur. Math. Soc., 17, 2015, 1327-1365. · Zbl 1341.35031 · doi:10.4171/JEMS/532
[31] Nguyen, H.-M., Cloaking using complementary media in the quasistatic regime, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33, 2016, 1509-1518. · Zbl 1375.35113 · doi:10.1016/j.anihpc.2015.06.004
[32] Nguyen, H.-M., Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients, J. Math. Pures Appl., 106, 2016, 342-374. · Zbl 1343.35074 · doi:10.1016/j.matpur.2016.02.013
[33] Nguyen, H.-M., Reflecting complementary and superlensing using complementary media for electromagnetic waves, submitted. · Zbl 1404.35428
[34] Nguyen, H.-M., Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object, submitted. https://arxiv.org/abs/1607.06492 · Zbl 1375.78019
[35] Nguyen, H.-M., Cloaking via anomalous localized resonance for doubly complementary media in the finite frequency regime, submitted. https://arxiv.org/abs/1511.08053 · Zbl 1428.78017
[36] Nguyen, H.-M., Cloaking using complementary for electromagnetic waves, submitted. https://arxiv.org/abs/1701.02339 · Zbl 1437.35649
[37] Nguyen, H.-M. and Nguyen, H. L., Complete resonance and localized resonance in plasmonic structures, ESAIM: Math. Model. Numer. Anal., 49, 2015, 741-754. · Zbl 1320.78005 · doi:10.1051/m2an/2014051
[38] Nguyen, H.-M. and Nguyen, H. L., Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations, Trans. Amer. Math. Soc., Ser. B, 2, 2015, 93-112. · Zbl 1336.35126 · doi:10.1090/btran/7
[39] Nguyen, H.-M. and Vogelius, M. S., Full range scattering estimates and their application to cloaking, Arch. Rational Mech. Anal., 203, 2012, 769-807. · Zbl 1257.78011 · doi:10.1007/s00205-011-0459-2
[40] Nguyen, H.-M. and Vogelius, M. S., Approximate cloaking for the wave equation via change of variables, SIAM J. Math. Anal., 44, 2012, 1894-1924. · Zbl 1258.35135 · doi:10.1137/110833154
[41] Nguyen, H.-M. and Vogelius, M. S., Approximate cloaking for the full wave equation: A study of the Lorentz model, J. Math. Pures Appl., 106, 2016, 797-836. · Zbl 1368.35037 · doi:10.1016/j.matpur.2016.03.012
[42] Nicorovici, N. A., McPhedran, R. C. and Milton, G. M., Optical and dielectric properties of partially resonant composites, Phys. Rev. B, 49, 1994, 8479-8482. · doi:10.1103/PhysRevB.49.8479
[43] Ola, P., Remarks on a transmission problem, J. Math. Anal. Appl., 196, 1995, 639-658. · Zbl 0848.35148 · doi:10.1006/jmaa.1995.1431
[44] Pendry, J. B., Negative refraction makes a perfect lens, Phys. Rev. Lett., 85, 2000, 3966-3969. · doi:10.1103/PhysRevLett.85.3966
[45] Pendry, J. B., Perfect cylindrical lenses, Optics Express, 1, 2003, 755-760. · doi:10.1364/OE.11.000755
[46] Pendry, J. B., Holden, A. J., Robbins, D. J. and Stewart, W. J., Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech., 47, 1999, 2075-2084. · doi:10.1109/22.798002
[47] Ramakrishna, S. A. and Pendry, J. B., Spherical perfect lens: Solutions of Maxwell’s equations for spherical geometry, Phys. Rev. B, 69, 2004, 115115. · doi:10.1103/PhysRevB.69.115115
[48] Shelby, R. A., Smith, D. R. and Schultz, S., Experimental Verification of a Negative Index of Refraction, Science, 292, 2001, 77-79. · doi:10.1126/science.1058847
[49] Veselago, V. G., The electrodynamics of substances with simultaneously negative values of ε and µ, Usp. Fiz. Nauk, 92, 1964, 517-526. · doi:10.3367/UFNr.0092.196707d.0517
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.