×

On the simultaneous homogenization and dimension reduction in elasticity and locality of \(\varGamma\)-closure. (English) Zbl 1370.74018

Summary: We provide a framework for simultaneous homogenization and dimension reduction in the setting of linearized elasticity as well as non-linear elasticity for the derivation of homogenized von Kármán plate and bending rod models. The framework encompasses even perforated domains and domains with oscillatory boundary, provided that the corresponding extension operator can be constructed. Locality property of \(\varGamma\)-closure is established, i.e. every energy density obtained by the homogenization process can be in almost every point obtained as the limit of periodic energy densities.

MSC:

74B05 Classical linear elasticity
74B20 Nonlinear elasticity
74E30 Composite and mixture properties
74K20 Plates
74Q05 Homogenization in equilibrium problems of solid mechanics

References:

[1] Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 1482-1518 (1992) · Zbl 0770.35005 · doi:10.1137/0523084
[2] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, New York (2000) · Zbl 0957.49001
[3] Attouch, H.: Variational Convergence for Functions and Operators. Pitman (Advanced Publishing Program), Boston (1984) · Zbl 0561.49012
[4] Babadjian, J.F., Barchiesi, M.: A variational approach to the local character of G-closure: the convex case. Ann. l’Inst. Henri Poincaré (C) 26, 351-373 (2009) · Zbl 1173.35012 · doi:10.1016/j.anihpc.2007.08.002
[5] Braides, A.: \[ \varGamma\] Γ-convergence for Beginners. Oxford University Press, Oxford (2002) · Zbl 1198.49001 · doi:10.1093/acprof:oso/9780198507840.001.0001
[6] Braides, A., Zeppieri, C.I.: A note on equi-integrability in dimension reduction problems. Calc. Var. Partial Differ. Equ. 29, 231-238 (2007) · Zbl 1109.74034 · doi:10.1007/s00526-006-0065-6
[7] Bukal, M., Pawelczyk, M., Velčić, I.: Derivation of homogenized Euler-Lagrange equations for von Kármán rods. J. Differ. Equ. (2017). doi:10.1016/j.jde.2017.02.009 · Zbl 1358.74008 · doi:10.1016/j.jde.2017.02.009
[8] Ciarlet, P.G.: Mathematical Elasticity. Vol. II: Theory of Plates. North-Holland Publishing Co, Amsterdam (1997) · Zbl 0888.73001
[9] Dal Maso, G.: An Introduction to \[\varGamma\] Γ-convergence. Birkhäuser Boston Inc., Boston (1993) · Zbl 0816.49001 · doi:10.1007/978-1-4612-0327-8
[10] Damlamian, A., Vogelius, M.: Homogenization limits of the equations of elasticity in thin domains. SIAM J. Math. Anal. 18, 435-451 (1987) · Zbl 0614.73012 · doi:10.1137/0518034
[11] Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. SIAM, Philadelphia (1999) · Zbl 0939.49002 · doi:10.1137/1.9781611971088
[12] Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180, 183-236 (2006) · Zbl 1100.74039 · doi:10.1007/s00205-005-0400-7
[13] Fonseca, I., Müller, S., Pedregal, P.: Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29, 736-756 (1998) · Zbl 0920.49009 · doi:10.1137/S0036141096306534
[14] Griso, G.: Asymptotic behavior of structures made of plates. Anal. Appl. 3, 325-356 (2005) · Zbl 1111.74029 · doi:10.1142/S0219530505000613
[15] Gustafsson, B., Mossino, J.: Compensated compactness for homogenization and reduction of dimension: the case of elastic laminates. Asymptot. Anal. 47, 139-169 (2006) · Zbl 1113.35018
[16] Haddadou, H.: A property of the \[HH\]-convergence for elasticity in perforated domains. Electron. J. Differ. Equ. 137, 1-11 (2006) · Zbl 1128.35017
[17] Horgan, C.O.: Korn inequalities and their applications in continuum mechanics. SIAM Rev. 37, 491-511 (1995) · Zbl 0840.73010 · doi:10.1137/1037123
[18] Lurie, K.A., Cherkaev, A.V.: Exact estimates of the conductivity of a binary mixture of isotropic materials. Proc. R. Soc. Edinb. A 105, 21-38 (1986) · Zbl 0623.73011 · doi:10.1017/S0308210500019041
[19] Marohnić, M., Velčić, I.: Non-periodic homogenization of bending-torsion theory for inextensible rods from 3D elasticity. Ann. Mat. Pura Appl. 195, 1055-1079 (2016) · Zbl 1406.35035 · doi:10.1007/s10231-015-0504-0
[20] Murat, F.; Tartar, L.; Cherkaev, AV (ed.); Kohn, R. (ed.), \[HH\]-Convergence, 21-43 (1997), Berlin · Zbl 0920.35019 · doi:10.1007/978-1-4612-2032-9_3
[21] Neukamm, S., Velčić, I.: Derivation of the homogenzed von-Karman plate equations from 3D nonlinear elasticity. Math. Models Meth. Appl. Sci. 23, 2701-2748 (2013) · Zbl 1282.35039 · doi:10.1142/S0218202513500449
[22] Oleinik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical Problems in Elasticity and Homogenization. North-Holland Publishing Co, Amsterdam (1992) · Zbl 0768.73003
[23] Raitums, U.: On the local representation of G-closure. Arch. Ration. Mech. Anal. 158, 213-234 (2001) · Zbl 1123.35320 · doi:10.1007/PL00004244
[24] Tartar, L.: Estimations fines des coefficients homogénéisés. In: Kree, P. (eds) Ennio De Giorgi colloquium vol. 125 of Res. Notes in Math., pp. 168-187. Pitman, Boston (1985) · Zbl 0586.35004
[25] Torquato, S.: Optimal design of heterogeneous materials. Annu. Rev. Mater. Res. 40, 101-129 (2010) · doi:10.1146/annurev-matsci-070909-104517
[26] Velčić, I.: On the general homogenization of von Kármán plate equations from 3D nonlinear elasticity. Anal. Appl. 15, 1-49 (2017) · Zbl 1356.35035 · doi:10.1142/S0219530515500244
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.