×

On the general homogenization of von Kármán plate equations from three-dimensional nonlinear elasticity. (English) Zbl 1356.35035

The author proves an homogenization result for a von Karman plate, using \( \Gamma \)-convergence tools. He starts with the thin domain \(\Omega ^{\varepsilon }=\omega \times h(-\frac{1}{2},\frac{1}{2})\) with \(h>0\) and \( \omega \subset \mathbb{R}^{2}\). He first defines an admissible composite material of class \(\mathcal{W}(\eta _{1},\eta _{2},\rho )\), \(0<\eta _{1}\leq \eta _{2}\) and \(\rho >0\), as a family \((W^{h})_{h}\) of energies from \(\Omega \times \mathbb{R}^{3\times 3}\) to \([0,+\infty ]\) such that \(W^{h}\) is almost surely equal to a Borel function on \(\Omega \times \mathbb{R}^{3\times 3}\), \( W^{h}\) is frame-indifferent, non-degenerate, minimal at \(\mathrm{Id}\) and has a quadratic approximation \(Q^{h}\) that is \[ \sup_{h>0}\mathrm{ess}\sup_{x\in \Omega }|W^{h}(x,\mathrm{Id}+G)-Q^{h}(x,G)|\leq |G|^{2}r(|G|) \] for a monotone function \(r: \mathbb{R}^{+}\rightarrow [ 0,+\infty ]\) with \(r(\delta )\rightarrow 0\) as \(\delta \rightarrow 0\). The associated energy is defined through \( I^{h}(y)=\frac{1}{h^{4}}\int_{\Omega }W^{h}(x,\nabla _{h}y(x))dx\) for \(y\in H^{1}(\Omega ,\mathbb{R}^{3})\) with \(\nabla _{h}y=(\partial _{1}y,\partial _{2}y,\frac{1}{h}\partial _{3}y)\). The author then defines the notion of convergence for a sequence \((y^{h})_{h}\subset L^{2}(\Omega ,\mathbb{R}^{3})\) to a triple \((\overline{R},u,v)\in \mathrm{SO}(3)\times L^{2}(\omega ,\mathbb{R} ^{2})\times L^{2}(\omega )\)if there exist rotations \((\overline{R}^{h})_{h} \) and functions \((u^{h})_{h}\subset L^{2}(\omega ,\mathbb{R}^{2})\) and \( (v^{h})_{h}\subset L^{2}(\omega )\) such that \[ (\overline{R}^{h})^{T}(\int_{(- \frac{1}{2},\frac{1}{2})}y^{h}(x^{\prime },x_{3})dx_{3}-\int_{\Omega }y^{h}dx)=\begin{pmatrix} x^{\prime }+h^{2}u^{h}(x^{\prime }) \\ hv^{h}(x^{\prime })\end{pmatrix}, \] \(u^{h}\rightarrow u\) in \(L^{2}(\omega ,\mathbb{R}^{2})\), \( v^{h}\rightarrow v\) in \(L^{2}(\omega )\) and \(\overline{R}^{h}\rightarrow \overline{R}\).
The main result of the paper proves the existence of a subsequence \((h_{n})_{n}\) and of a limit energy functional \(I^{0}:\mathcal{A} (\omega )\rightarrow \mathbb{R}_{0}^{+}\), with \(\mathcal{A}(\omega )=H^{1}(\omega ,\mathbb{R}^{2})\times H^{2}(\omega )\), such that:
1) if \((y^{h_{n}})_{n}\subset H^{1}(\omega ,\mathbb{R}^{2})\) is such that \( \lim \sup_{n}I^{h_{n}}(y^{h_{n}})<+\infty \), there exists \((\overline{R} ,u,v)\in \mathrm{SO}(3)\times \mathcal{A}(\omega )\), and \((y^{h_{n}})_{n}\) converges to \((\overline{R},u,v)\) in the sense of the preceding definition;
2) if \((y^{h_{n}})_{n}\subset H^{1}(\omega ,\mathbb{R}^{2})\) satisfies \(\lim \sup_{n}I^{h_{n}}(y^{h_{n}})<+\infty \) and \((y^{h_{n}})_{n}\) converges to \(( \overline{R},u,v)\), then \(\lim \inf_{n}I^{h_{n}}(y^{h_{n}})\geq I^{0}(u,v)\);
3) for every \((\overline{R},u,v)\in SO(3)\times \mathcal{A}(\omega )\) there exists a sequence \((y^{h_{n}})_{n}\subset H^{1}(\omega ,\mathbb{R}^{2})\) such that \((y^{h_{n}})_{n}\) converges to \((\overline{R},u,v)\) and \( \lim_{n}I^{h_{n}}(y^{h_{n}})=I^{0}(u,v)\).
\(I^{0}\) is given through \(I^{0}(u,v)=\int_{\omega }Q(x^{\prime },\mathrm{sym}\nabla u+ \frac{1}{2}\nabla u\otimes \nabla v,-\nabla ^{2}v)dx^{\prime }\). For the proof, the author analyzes the properties of minimizing sequences within this context and he adapts the \(\Gamma \)-convergence techniques. He also uses decomposition results from G. Griso [Anal. Appl., Singap. 6, No. 1, 11–22 (2008; Zbl 1210.74121)], previous results he proved and properties of equiintegrable functions which are proved in an appendix.

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35Q74 PDEs in connection with mechanics of deformable solids
49J45 Methods involving semicontinuity and convergence; relaxation
74B20 Nonlinear elasticity
74E30 Composite and mixture properties
74K20 Plates
74Q05 Homogenization in equilibrium problems of solid mechanics

Citations:

Zbl 1210.74121

References:

[1] Allaire, G., Homogenization and two-scale convergence, SIAM J. Math. Anal.23(6) (1992) 1482-1518. · Zbl 0770.35005
[2] Babadjian, J.-F. and Baía, M., 3D-2D analysis of a thin film with periodic microstructure, Proc. Roy. Soc. Edinburgh Sect. A136(2) (2006) 223-243. · Zbl 1125.49035
[3] Bocea, M. and Fonseca, I., Equi-integrability results for 3D-2D dimension reduction problems, ESAIM Control Optim. Calc. Var.7 (2002) 443-470. · Zbl 1044.49010
[4] Braides, A., \( \Gamma \)-Convergence for Beginners, , Vol. 22 (Oxford University Press, Oxford, 2002). · Zbl 1198.49001
[5] Braides, A., Fonseca, I. and Francfort, G., 3D-2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J.49(4) (2000) 1367-1404. · Zbl 0987.35020
[6] Braides, A. and Zeppieri, C. I., A note on equi-integrability in dimension reduction problems, Calc. Var. Partial Differential Equations29(2) (2007) 231-238. · Zbl 1109.74034
[7] Ciarlet, P. G., Mathematical Elasticity, Vol. 2, , Vol. 27 (North-Holland, Amsterdam, 1997); Theory of plates. · Zbl 0888.73001
[8] Courilleau, P. and Mossino, J., Compensated compactness for nonlinear homogenization and reduction of dimension, Calc. Var. Partial Differential Equations20(1) (2004) 65-91. · Zbl 1072.35028
[9] Dal Maso, G., An Introduction to \(\Gamma \)-Convergence, , Vol. 8 (Birkhäuser Boston, Boston, MA, 1993). · Zbl 0816.49001
[10] Evans, L. C. and Gariepy, R. F., Measure Theory and Fine Properties of Functions, (CRC Press, Boca Raton, FL, 1992). · Zbl 0804.28001
[11] Fonseca, I., Müller, S. and Pedregal, P., Analysis of concentration and oscillation effects generated by gradients, SIAM J. Math. Anal.29(3) (1998) 736-756(electronic). · Zbl 0920.49009
[12] Friesecke, G., James, R. D. and Müller, S., A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math.55(11) (2002) 1461-1506. · Zbl 1021.74024
[13] Friesecke, G., James, R. D. and Müller, S., A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence, Arch. Ration. Mech. Anal.180(2) (2006) 183-236. · Zbl 1100.74039
[14] Griso, G., Asymptotic behavior of structures made of plates, Anal. Appl. (Singap.)3(4) (2005) 325-356. · Zbl 1111.74029
[15] Gustafsson, B. and Mossino, J., Compensated compactness for homogenization and reduction of dimension: The case of elastic laminates, Asymptot. Anal.47(1-2) (2006) 139-169. · Zbl 1113.35018
[16] Hornung, P., Neukamm, S. and Velčić, I., Derivation of a homogenized nonlinear plate theory from 3D elasticity, Calc. Var. Partial Differential Equations51 (2014) 677-699. · Zbl 1327.35018
[17] P. Hornung and I. Velčić, Derivation of a homogenized von-Kármán shell theory from 3D elasticity, to appear in Ann. Inst. H. Poincaré Non Linéaire. Anal.; DOI: 10.1016/j.anihpc.2014.05.003. · Zbl 1329.74178
[18] Le Dret, H. and Raoult, A., The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl. (9)74(6) (1995) 549-578. · Zbl 0847.73025
[19] M. Maroje and I. Velčić, Homogenization of bending theory of plates; The case of oscillations in the direction of thickness, to appear in Comm. Pure Appl. Anal.. · Zbl 1329.35047
[20] M. Maroje and I. Velčić, Non-periodic homogenization of bending-torsion theory for inextensible rods from 3D elasticity, to appear in Ann. Mat. Pura Appl.; DOI: 10.1007/s10231-015-0504-0. · Zbl 1406.35035
[21] Murat, F. and Tartar, L., \(H\)-convergence, in Topics in the Mathematical Modeling of Composite Materials, , Vol. 31 (Birkhäuser Boston, Boston, MA, 1997), pp. 21-43. · Zbl 0920.35019
[22] S. Neukamm, Homogenization, linearization and dimension reduction in elasticity with variational methods, Ph.D. thesis, Technische Universität München (2010).
[23] Neukamm, S., Rigorous derivation of a homogenized bending-torsion theory for inextensible rods from three-dimensional elasticity, Arch. Ration. Mech. Anal.206(2) (2012) 645-706. · Zbl 1295.74049
[24] Neukamm, S. and Olbermann, H., Homogenization of the nonlinear bending theory for plates, Calc. Var. Partial Differential Equations53(3-4) (2015) 719-753. · Zbl 1356.35034
[25] Neukamm, S. and Velčić, I., Derivation of a homogenized von Kármán plate theory from 3D elasticity, Math. Models Methods Appl. Sci.23(14) (2013) 2701-2748. · Zbl 1282.35039
[26] Shi, P. and Wright, S., Higher integrability of the gradient in linear elasticity, Math. Ann.299(3) (1994) 435-448. · Zbl 0806.73009
[27] Stein, E. M., Singular Integrals and Differentiability Properties of Functions, , No. 30 (Princeton University Press, Princeton, NJ, 1970). · Zbl 0207.13501
[28] Velčić, I., Periodically wrinkled plate of Föppl von Kármán type, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)12(2) (2013) 275-307. · Zbl 1271.74290
[29] Velčić, I., On the derivation of homogenized bending plate model, Calc. Var. Partial Differential Equations53(3-4) (2015) 561-586. · Zbl 1329.35050
[30] Visintin, A., Towards a two-scale calculus, ESAIM Control Optim. Calc. Var.12(3) (2006) 371-397(electronic). · Zbl 1110.35009
[31] Visintin, A., Two-scale convergence of some integral functionals, Calc. Var. Partial Differential Equations29(2) (2007) 239-265. · Zbl 1129.35011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.