×

Limiting absorption principle for Schrödinger operators with oscillating potentials. (English) Zbl 1370.35092

The authors consider the Schrödinger operator \(H = H_0 + V(Q)\), \(H_0=-\Delta\), where \(V(Q)\) is the multiplication operator by a real valued function \(V\) on \({\mathbb R}^d\) such that \(V=V_{sr} + v\nabla \tilde{V}_{sr} + V_{lr} + V_c +W_{\alpha\beta}\). \(V_c\) is compactly supported and \(H_0\)-compact; \(V_{sr},\tilde{V}_{sr}\) and \(V_{lr}\) are short-range and long-range components, \(W=w(1-\kappa(|x|))|x|^{-\beta}\sin(k|x|^\alpha)\), \(\kappa\in\mathrm{C}^\infty_c({\mathbb R}; {\mathbb R} )\), is an oscillating part. The main result is the following limiting absorption principle (LAP) \[ \sup_{{\mathrm{Re}} z\in{\mathcal{I}} ,\atop {\mathrm{Im}} z\neq 0}\left\|\langle Q\rangle^{-s}(H-z)^{-1}\Pi^\perp\langle Q\rangle^{-s}\right\|\;< +\infty, \] where \(\Pi\) is the orthogonal projection onto the pure point spectral subspace of \(H\), and \(\Pi^\perp = 1-\Pi\) (if \(\mathcal I\) does not intersect the point spectrum, one can remove \(\Pi^\perp\)). The absence of positive eigenvalues is also proved in some cases.
At present time one of the most popular methods of proving LAP is the Mourre commutator method. But this method (and the weighted Mourre commutator method) cannot be applied to recover LAP for arbitrary pairs \((\alpha, \beta)\), since the Hamiltonian \(H\) is not regular enough w.r.t. the generator of dilations. To avoid these difficulties, the authors use the localised Putnam theory developed by S. Golénia and T. Jecko [Complex Anal. Oper. Theory 1, No. 3, 399–422 (2007; Zbl 1167.47010)]. This is what allowed the authors to improve known results.

MSC:

35J10 Schrödinger operator, Schrödinger equation

Citations:

Zbl 1167.47010

References:

[1] S.Agmon: {\em Lower bounds for solutions of Schr\"odinger equations.} J.Analyse Math.23, 1970, 1-25. · Zbl 0211.40703
[2] W.O.Amrein, A.Boutet de Monvel, V.Georgescu: {\em \(C_0\)-groups, commutator methods and spectral theory of \(N\)-body hamiltonians.}, Birkh\"auser 1996. · Zbl 0962.47500
[3] R.Beals: {\em Weighted distribution spaces and pseudodifferential operators}, J.Analyse Math.39 (1981), 131-187. · Zbl 0474.35089
[4] M.Ben-Artzi: {\em Smooth Spectral Theory}, Operator Theory: Advances and Applications, 111 (2010), 119-182.
[5] M.Ben-Artzi, A.Devinatz: {\em Spectral and scattering theory for the adiabatic oscillator and related potentials.} J. Maths. Phys. 111 (1979), p.594-607. · Zbl 0422.35064
[6] J-M.Bony: {\em Caract\'erisation des op\'erateurs pseudo-diff\'erentiels.} S\'eminaire \'EDP (1996-1997), expos\'e num\'ero XXIII.
[7] J-M.Bony: {\em Sur l’inégalit\'e de Fefferman-Phong.} S\'eminaire \'EDP (1998-1999), expos\'e num\'ero III.
[8] J-M.Bony, J-Y. Chemin: {\em Espaces fonctionnels associ\'es au calcul de Weyl-H\"ormander.} Bulletin de la S.M.F., tome 122, num\'ero 1 (1994), p.77-118. · Zbl 0798.35172
[9] N. Boussaid, S. Gol\'enia: {\em Limiting absorption principle for some long range pertubations of Dirac systems at threshold energies.} Comm.Math.Phys.299, 677-708 (2010). · Zbl 1205.81084
[10] L.Cattaneo: {\em Mourre’s inequality and Embedded bounded states}, Bull.Sci Math.{\bf 129}, Issue 7, 591-614, 2005. · Zbl 1080.81009
[11] L.Cattaneo, G.M.Graf, W.Hunziker: {\em A general resonance theory based on Mourre’s inequality}, Ann. H. Poincar\'e 7 (2006), 3, p.583-601. · Zbl 1093.81023
[12] M.Combescure: {\em Spectral and scattering theory for a class of strongly oscillating potentials}, Comm. Math. Phys. 73, 43-62 (1980). · Zbl 0434.35072
[13] M.Combescure, J.Ginibre: {\em Spectral and scattering theory for the Schrödinger operator with strongly oscillating potentials}, Ann. IHP, section A, tome \(24, n^o 1 (1976)\), p. 17-30. · Zbl 0336.47007
[14] J.Cruz-Sampedro, I.Herbst, R.Martinez-Avenda\~{n}o: {\em Pertubations of the Wigner-Von Neumann potential leaving the embedded eigenvalue fixed.} Ann. H. Poincar\'e 3 (2002) 331-345. · Zbl 1021.81016
[15] H.L.Cycon, R.G.Froese, W.Kirsch, B.Simon: {\em Schr\"odinger operators with applications to quantum mechanics and global geometry.} Springer Verlag 1987. · Zbl 0619.47005
[16] J.Derezi\'nski : {\em Asymptotic completeness for } · Zbl 0844.47005
[17] J.Derezi\'nski, C.G\'erard: {\em Scattering theory of classical and quantum N-particle systems.} Springer-Verlag 1997. · Zbl 0899.47007
[18] J.Derezi\'nski, V.Jak\v{s}i\'c: {\em Spectral theory of Pauli-Fierz } · Zbl 1034.81016
[19] A.Devinatz, R.Moeckel, P.Rejto: {\em A limiting absorption principle for Schr\"odinger operators with Von Neumann-Wigner potentials.} Int. Eq. and Op. Theory, vol.14 (1991). · Zbl 0731.47050
[20] A.Devinatz, P.Rejto: {\em A limiting absorption principle for Schr\"odinger operators with oscillating potentials. Part I.} J. Diff. Eq., 49, pp. 29-84 (1983). · Zbl 0537.34024
[21] A.Devinatz, P.Rejto: {\em A limiting absorption principle for Schr\"odinger operators with oscillating potentials. Part II.} J. Diff. Eq., 49, pp. 85-104 (1983). · Zbl 0555.34018
[22] R.G.Froese, I.Herbst: {\em Exponential bounds and absence of positive eigenvalues for \(N\)-body Schr\"odinger operators.} Comm.Math.Phys.87, 429-447 (1982). · Zbl 0509.35061
[23] R.G.Froese, I.Herbst, M.Hoffmann-Ostenhof, T.Hoffmann-Ostenhof: {\em \(L^2\)-Exponential Lower Bounds to solutions of the Schr\"odinger Equation.} Comm.Math.Phys.87, 265-286 (1982). · Zbl 0514.35024
[24] R.G.Froese, I.Herbst, M.Hoffmann-Ostenhof, T.Hoffmann-Ostenhof : {\em On the absence of positive eigenvalues for one-body Schr\"odinger operators.} J. Analyse Math.41, 272-284, (1982). · Zbl 0512.35062
[25] V.Georgescu, C.G\'erard: {\em On the Virial Theorem in Quantum Mechanics}, Comm.Math.Phys.{\bf 208}, 275-281, (1999). · Zbl 0961.81009
[26] V.Georgescu, C.G\'erard, J.S.M\o ller: {\em Commutators, \(C\sb 0\)-semigroups and resolvent estimates}, J. Funct. Anal. {\bf 216}, no 2, p.303-361, 2004. · Zbl 1073.47518
[27] V.Georgescu, M.Mantoiu: {\em On the spectral theory of singular Dirac type Hamiltonians}, J. Operator Theory {\bf 46} (2001), no. 2, 289-321. · Zbl 0993.35070
[28] C.G\'erard: {\em A proof of the abstract limiting absorption principle by energy estimates}, J. Funct. Anal. 254 (2008), no 11, 2707-2724. · Zbl 1141.47017
[29] S.Gol\'enia, Th.Jecko: {\em A new look at Mourre’s commutator theory}, Compl. Ana. Op. Theory, Vol. 1, No. 3, p.399-422, August 2007. Also available on ArXiv: “arXiv:math/0607275 [math.SP] ”. · Zbl 1167.47010
[30] S.Gol\'enia, Th.Jecko: {\em Weighted Mourre’s commutator theory, application to Schr\"odinger operators with oscillating potential}, J. Oper. Theory 70:1 (2013), 109-144. Also available on ArXiv: “arXiv:1012.0705 [math.SP] ”. · Zbl 1289.47022
[31] S.Gol{\'e}nia, S.Moroianu: Spectral analysis of magnetic Laplacians on conformally cusp manifolds., Ann. H. Poincar{\'e} 9 (2008), no. 1, 131-179. · Zbl 1134.58009
[32] B.Helffer, J.Sj\`“{o}strand: {\em Op\'erateurs de Schr\'”{o}dinger avec champs magn\'etiques faibles et constants.} Expos\'e No.XII, S\'eminaire EDP, f\'evrier 1989, Ecole Polytechnique.
[33] L.H\"ormander: {\em The analysis of linear partial differential operators I.}, · Zbl 0521.35002
[34] L.H\"ormander: {\em The analysis of linear partial differential operators II.}, · Zbl 0521.35002
[35] L.H\"ormander: {\em The analysis of linear partial differential operators III.}, Springer-Verlag Berlin Heidelberg 1983. · Zbl 0521.35002
[36] W.Hunziker, I.M.Sigal: {\em The quantum \(N\)-body problem}, J.Math.Phys.{\bf 41} (6), 3448-3510, 2000. · Zbl 0981.81026
[37] A.D.Ionescu, D.Jerison: {\em On the absence of positive eigenvalues of Schr\"odinger operators with rough potentials}, GAFA, Geom.Funct.Anal. 13, 2003, 1029-1081. · Zbl 1055.35098
[38] A.Kiselev: Imbedded singular continuous spectrum for Schr\"odinger operators, J.Amer.Math.Soc.18 (2005), no.3, 571-603. · Zbl 1081.34084
[39] J.S.M\o ller, E.Skibsted: · Zbl 1060.81021
[40] A.Jensen, E.Mourre, P.Perry: {\em Multiple commutator estimates and resolvent smoothness in quantum scattering theory.} Ann.Inst.H. Poincar\'e vol.41, no 2, 1984, p.207-225. · Zbl 0561.47007
[41] T. Kato: {\em Pertubation theory for linear operators.} Springer-Verlag 1995.
[42] R.B. Lavine: {\em Commutators and scattering theory. I. Repulsive interactions.} Comm. Math. Phys. {\bf 20}, 301-323, (1971). · Zbl 0207.13706
[43] R.B. Lavine: {\em Commutators and scattering theory. II. A class of one body problems.} Indiana Univ. Math. J., Vol. {\bf 21}, No. {\bf 7}, 643-656, (1972). · Zbl 0216.38501
[44] N. Lerner: {\em Metrics on phase space and non-selfadjoint pseudodifferential operators.} Birkha\"user 2010. · Zbl 1186.47001
[45] T.Kato: {\em Growth properties of solutions of the } · Zbl 0091.09502
[46] M. Mandich: {\em The limiting absorption principle for the discrete Wigner-Von Neumann operator.}\hfill
Preprint. Available on “http://arxiv.org/abs/1605.00879” and “https://hal.archives-ouvertes.fr/hal-01297239”. · Zbl 1357.39013
[47] A. Martin: {\em On the limiting absorption principle for Schr\"odinger Hamiltonians.} Preprint. \hfill
Available on “http://arxiv.org/abs/1510.03543” and\hfill
“https://hal.archives-ouvertes.fr/hal-01214523”.
[48] K.Mochizuki, J.Uchiyama: {\em Radiation conditions and spectral theory for 2-body Schr\"odinger operators with “oscillating” long-range potentials I: the principle of limiting absorption.} J.Math.Kyoto Univ.{\bf 18}, 2, 377-408, 1978. · Zbl 0392.35016
[49] J.S. M\o ller: {\em An abstract radiation condition and applications to N-body systems.} Rev. Math. Phys. 12 (2000), no. 5, 767-803. · Zbl 1044.81124
[50] E.Mourre: {\em Absence of singular continuous spectrum for certain self-adjoint operators.} Comm.in Math.Phys.{\bf 78}, 391-408, 1981. · Zbl 0489.47010
[51] S.Nakamura: {\em A remark on the Mourre theory for two body Schr\"odinger operators.} J. Spectral Theory {\bf 4}, (2015), No. 3, 613-619. · Zbl 1308.81165
[52] M.Reed, B.Simon : {\em Methods of Modern Mathematical } · Zbl 0405.47007
[53] M.Reed and B.Simon : {\em Methods of Modern } · Zbl 0401.47001
[54] M.Reed, B.Simon: {\em Methods of Modern Mathematical Physics, Tome IV: Analysis of operators.} Academic Press. · Zbl 0401.47001
[55] C.Remling: The absolutely continuous spectrum of one-dimensional Schr\"odinger operators with decaying potentials, Comm.Math.Phys.{\bf 193} (1998), 151-170 · Zbl 0908.34067
[56] P.Rejto, M.Taboada: {\em A limiting absorption principle for Schr\"odinger operators with generalized Von Neumann-Wigner potentials I. Construction of approximate phase.} J.Math. Anal. and Appl. 208, p.85-108 (1997). · Zbl 0902.35028
[57] P.Rejto, M.Taboada: {\em A limiting absorption principle for Schr\"odinger operators with generalized Von Neumann-Wigner potentials II. The proof. } J. Math. Anal. and Appl. 208, p.311-336 (1997). · Zbl 0902.35029
[58] J.Sahbani: {\em The conjugate operator method for locally regular Hamiltonians.} J.Oper.Theory 38, No.2, 297-322 (1997). · Zbl 0905.47003
[59] L. Schwartz: {\em Th\'eorie des distributions.} Hermann, Paris 1966. · Zbl 0149.09501
[60] B.Simon: {\em On positive eigenvalues of one body Schr\"odinger operators.} Comm.Pure Appl.Math.22, 531-538 (1969) · Zbl 0167.11003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.