×

A limiting absorption principle for Schrödinger operators with oscillating potentials. Part I: \(-\Delta +c \sin(b| x|^{\alpha})/| x|^{\beta}\) for certain c,\(\alpha\),\(\beta\). (English) Zbl 0537.34024

This paper presents a limiting absorption principle for Schrödinger operators with an oscillating potential of the form \(p_ 0(x)=c \sin(b| x|^{\alpha})/| x|^{\beta}, \alpha,\beta>0\). The main step in obtaining a limiting principle for \(H(p_ 0)=-\Delta +p_ 0(x)\) is to prove an important inequality. As the potential \(p_ 0(x)\) is radially symmetric the Schrödinger operator for this potential is unitarily equivalent to a direct sum of ordinary second order differential operators. Then, the approach is to replace the potentials by more easily handled approximating potentials. The details of proofs are given.
Reviewer: J.L.Guiraud

MSC:

34L99 Ordinary differential operators
47E05 General theory of ordinary differential operators
Full Text: DOI

References:

[1] Agmon, S., Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat., 151-218 (1975) · Zbl 0315.47007
[2] Ben-Artzi, M.; Devinatz, A., Spectral and scattering theory for the adiabatic oscillator and related potentials, J. Math. Phys., 111, 594-607 (1979) · Zbl 0422.35064
[3] Bourgeois, B., Quantum-Mechanical Scattering Theory for Long-Range Oscillatory Potentials, (Thesis (1979), Univ. of Texas: Univ. of Texas Austin)
[4] Devinatz, A., The existence of wave operators for oscillating potentials, J. Math. Phys., 21, 2406-2411 (1980) · Zbl 0452.35103
[5] Dollard, J.; Friedman, C., Existence of the Moller wave operators for \(V(r) = λr^{−β}\) sin \(( μr^α )\), Ann. Physics, 111, 251-266 (1978) · Zbl 0383.47011
[6] Enss, V., Asymptotic completeness for quantum mechanical potential scattering, Comm. Math. Phys., 61, 285-291 (1978) · Zbl 0389.47005
[7] Erdelyi, A., Asymptotic solutions of differential equations with transition points or singularities, J. Math. Phys., 1, 16-26 (1960) · Zbl 0125.04802
[8] Erdelyi, A., Asymptotic Expansions (1956), Dover: Dover New York · Zbl 0070.29002
[9] Friedrichs, K. O., Spectral Theory of Operators in Hilbert Space (1973), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0266.47001
[10] Kato, T., Perturbation Theory for Linear Operators (1966), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0148.12601
[11] Kato, T., Scattering theory and perturbation of continuous spectra, (Actes, Congrés Intern. Math., Tome 1 (1970)), 135-140 · Zbl 0244.47003
[12] Langer, R. E., On the asymptotic solutions of ordinary differential equations with an application to Bessel functions of large order, Trans. Amer. Math. Soc., 33, 23-64 (1931) · Zbl 0001.06003
[13] Langer, R. E., The asymptotic solutions of ordinary linear differential equations of the second order with special reference to a turning point, Trans. Amer. Math. Soc., 67, 461-490 (1949) · Zbl 0041.05901
[14] Mochizuki, K.; Uchiyama, J., Radiation conditions and spectral theory for 2-body Schrödinger operators with “oscillating” long range potentials I, J. Math. Kyoto Univ., 18, 2, 377-408 (1978) · Zbl 0392.35016
[15] Olver, F. W.T, Asymptotics and Special Functions (1974), Academic Press: Academic Press New York · Zbl 0303.41035
[16] Wave mechanics, (Enz, C. P., The Wkb-method. The Wkb-method, Pauli Lectures on Physics, Vol. 5 (1977), MIT Press: MIT Press Cambridge, Mass), Sect. 27 · JFM 55.1175.01
[17] Reed, M.; Simon, B., Analysis of operators, (Methods of Modern Mathematical Physics, Vol. IV (1978), Academic Press: Academic Press New York), Section XIII.13, Example 1 · Zbl 0517.47006
[18] Rejto, P., On the resolvents of a family of a non-self adjoint operators, Lett. Math. Phys., 1, 111-118 (1976) · Zbl 0353.34063
[19] Rejto, P., An application of the third order JWKB-approximation method to prove absolute continuity, I. The construction, Helv. Phys. Acta., 50, 495-508 (1977)
[20] Rejto, P., Uniform Estimates for the Resolvent Kernels for the Parts of the Laplacian, Univ. of Minnesota, Tech. Summ. Report (1970)
[21] Saito, Y., Spectral Representation for Schrödinger Operators with Long-Range Potentials, (Lecture Notes in Mathematics (1979), Springer-Verlag: Springer-Verlag Berlin/New York), No. 727 · Zbl 0414.47012
[22] Sibuya, Y., Global Theory of a Second Order Linear Differential Equation with a Polynomial Coefficient (1975), North-Holland/American Elsevier: North-Holland/American Elsevier Amsterdam/New York · Zbl 0322.34006
[23] von Neumann, J.; Wigner, E., Über die merkwürdige diskrete Eigenwerte, Phys. Z., 30, 465-467 (1929) · JFM 55.0520.04
[24] Wasow, W., Asymptotic Expansions for Ordinary Differential Equations (1965), Wiley-Interscience: Wiley-Interscience New York · Zbl 0169.10903
[25] Weidmann, J., Zur Spectraltheorie von Sturm-Liouville-Operatoren, Math. Z., 98, 268-302 (1967) · Zbl 0168.12301
[26] White, D. A.W, Schrödinger operators with rapidly oscillating central potentials, Trans. Amer. Math. Soc., 275, 641-677 (1983) · Zbl 0548.35030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.