×

On the existence of min-max minimal surface of genus \(g\geq2\). (English) Zbl 1369.49059

Summary: In this paper, we establish a min-max theory for minimal surfaces using sweepouts of surfaces of genus \(g\geq2\). We develop a direct variational method similar to the proof of the famous Plateau problem by J. Douglas [Trans. Am. Math. Soc. 33, 263–321 (1931; Zbl 0001.14102)] and T. Radó [Ann. Math. (2) 31, 457–469 (1930; JFM 56.0437.02)]. As a result, we show that the min-max value for the area functional can be achieved by a bubble tree limit consisting of branched genus-\(g\) minimal surfaces with nodes, and possibly finitely many branched minimal spheres. We also prove a Colding-Minicozzi type strong convergence theorem similar to the classical mountain pass lemma. Our results extend the min-max theory by Colding-Minicozzi and the author to all genera.

MSC:

49Q05 Minimal surfaces and optimization
49J35 Existence of solutions for minimax problems
58E20 Harmonic maps, etc.
58E12 Variational problems concerning minimal surfaces (problems in two independent variables)
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature

References:

[1] Ahlfors, L. and Bers, L., Riemann’s mapping theorem for variable metrics, Ann. Math.72 (1960) 385-404. · Zbl 0104.29902
[2] Chen, J. and Tian, G., Compactification of moduli space of harmonic mappings, Comment. Math. Helv.74 (1999) 201-237. · Zbl 0958.53047
[3] Colding, T. and De Lellis, C., The min-max construction of minimal surfaces, Surveys in Differential Geometry, Vol. VIII (International Press, Somerville, MA, 2003), pp. 75-107. · Zbl 1051.53052
[4] Colding, T. and Minicozzi, W. D., Minimal Surfaces, , Vol. 4 (Courant Institute of Mathematical Sciences, New York, 1999). · Zbl 0987.49025
[5] Colding, T. and Minicozzi, W. D., Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman, JAMS18 (2005) 561-569. · Zbl 1083.53058
[6] Colding, T. and Minicozzi, W. D., Width and finite extinction time of Ricci flow, Geom. Topol.12 (2008) 2537-2586. · Zbl 1161.53352
[7] Colding, T. and Minicozzi, W. D., A Course in Minimal Surfaces, , Vol. 121 (American Mathematical Society, Providence, RI, 2011). · Zbl 1242.53007
[8] Ding, W., Li, J. and Liu, Q., Evolution of minimal torus in Riemannian manifolds, Invent. math.165 (2006) 225-242. · Zbl 1109.53066
[9] Douglas, J., Solution of the problem of Plateau, Trans. Amer. Math. Soc.33 (1931) 263-321. · JFM 57.1542.03
[10] Gromov, M., Pseudoholomorphic curves in symplectic manifolds, Invent. Math.82 (1985) 307-347. · Zbl 0592.53025
[11] Hummel, C., Gromov’s Compactness Theorem for Pseudo-Holomorphic Curves, , Vol. 151 (Birkhäuser Verlag, Basel, 1997). · Zbl 0870.53002
[12] Imayoshi, Y. and Taniguchi, M., An Introduction to Teichmüller Spaces (Springer-Verlag, Tokyo, 1992). · Zbl 0754.30001
[13] Jost, J., Two Dimensional Geometric Variational Problems (J. Wiley and Sons, Chichester, NY, 1991). · Zbl 0729.49001
[14] Marques, F. and Neves, A., Rigidity of min-max minimal spheres in three-manifolds, Duke Math. J.161 (2012) 2725-2752. · Zbl 1260.53079
[15] Micallef, M. and Moore, J., Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes. Ann. Math.127 (1988) 199-227. · Zbl 0661.53027
[16] Morse, M. and Tompkins, C., Minimal surfaces not of minimum type by a new mode of approximation, Ann. Math.42 (1941) 62-72. · JFM 67.1039.03
[17] Parker, T., Bubble tree convergence for harmonic maps, J. Differential Geometry44 (1996) 595-633. · Zbl 0874.58012
[18] Parker, T. and Wolfson, J., Pseudo-holomorphic maps and bubble trees, J. Geom. Anal.3 (1993) 63-98. · Zbl 0759.53023
[19] Pitts, J., Existence and Regularity of Minimal Surfaces on Riemannian Manifold, , Vol. 27 (Princeton University Press, Princeton, 1981). · Zbl 0462.58003
[20] Qing, J. and Tian, G., Bubbling of the heat flows for harmonic maps from surfaces, Comm. Pure Appl. Math.50 (1997) 295-310. · Zbl 0879.58017
[21] Rado, T., On Plateau’s problem, Ann. Math.31 (1930) 457-469. · JFM 56.0437.02
[22] Sacks, J. and Uhlenbeck, K., The existence of minimal immersions of 2-spheres, Ann. Math.113 (1981) 1-24. · Zbl 0462.58014
[23] Sacks, J. and Uhlenbeck, K., Minimal immersions of closed Riemann surfaces, Trans. Amer. Math. Soc.271 (1982) 639-652. · Zbl 0527.58008
[24] Schoen, R. and Uhlenbeck, K., Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geometry18 (1983) 253-268. · Zbl 0547.58020
[25] Schoen, R. and Yau, S. T., Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature, Ann. Math.110 (1979) 127-142. · Zbl 0431.53051
[26] Simon, L., Lectures on Geometric Measure Theory (Australian National University Centre for Mathematical Analysis, Canberra, 1983). · Zbl 0546.49019
[27] Simon, L., A strict maximum principle for area minimizing hypersurfaces, J. Differential Geometry26 (1987) 327-335. · Zbl 0625.53052
[28] Siu, Y. and Yau, S. T., Compact Kähler manifolds of positive bisectional curvature, Invent. Math.59 (1980) 189-204. · Zbl 0442.53056
[29] Struwe, M., Variational methods, 3rd edn. (Springer, Berlin, 2000). · Zbl 0939.49001
[30] Zhou, X., On the existence of min-max minimal torus, J. Geom. Anal.20 (2010) 1026-1055. · Zbl 1203.58001
[31] Zhu, M., Harmonic maps from degenerating Riemann surfaces, Math. Z.264 (2010) 63-855. · Zbl 1213.53086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.