×

Computing coherent sets using the Fokker-Planck equation. (English) Zbl 1369.37084

Summary: We perform a numerical approximation of coherent sets in finite-dimensional smooth dynamical systems by computing singular vectors of the transfer operator for a stochastically perturbed flow. This operator is obtained by solution of a discretized Fokker-Planck equation. For numerical implementation, we employ spectral collocation methods and an exponential time differentiation scheme. We experimentally compare our approach with the more classical method by Ulam that is based on discretization of the transfer operator of the unperturbed flow.

MSC:

37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.)
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
35Q84 Fokker-Planck equations
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
76F20 Dynamical systems approach to turbulence
37C30 Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc.

Software:

GAIO

References:

[1] R. Banisch, Understanding the geometry of transport: diffusion maps for Lagrangian trajectory data unravel coherent sets,, <a href= · Zbl 1387.37011
[2] J. P. Boyd, <em>Chebyshev and Fourier Spectral Methods</em>,, Second edition. Dover Publications (2001) · Zbl 0994.65128
[3] S. Cox, Exponential time differencing for stiff systems,, Journal of Computational Physics, 176, 430 (2002) · Zbl 1005.65069 · doi:10.1006/jcph.2002.6995
[4] M. Dellnitz, The algorithms behind GAIO - Set oriented numerical methods for dynamical systems,, in Ergodic Theory, 145 (2001) · Zbl 0998.65126
[5] M. Dellnitz, On the approximation of complicated dynamical behavior,, SIAM Journal on Numerical Analysis, 36, 491 (1999) · Zbl 0916.58021 · doi:10.1137/S0036142996313002
[6] L. Evans, <em>Partial Differential Equations</em>,, Graduate studies in mathematics (2010) · Zbl 1194.35001 · doi:10.1090/gsm/019
[7] G. Froyland, Coherent sets for nonautonomous dynamical systems,, Physica D, 239, 1527 (2010) · Zbl 1193.37032 · doi:10.1016/j.physd.2010.03.009
[8] G. Froyland, Almost-invariant sets and invariant manifolds - connecting probabilistic and geometric descriptions of coherent structures in flows,, Physica D, 238, 1507 (2009) · Zbl 1178.37119 · doi:10.1016/j.physd.2009.03.002
[9] G. Froyland, Transport in time-dependent dynamical systems: Finite-time coherent sets,, Chaos, 20 (2010) · Zbl 1311.37008 · doi:10.1063/1.3502450
[10] G. Froyland, An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems,, Physica D: Nonlinear Phenomena, 250, 1 (2013) · Zbl 1355.37013 · doi:10.1016/j.physd.2013.01.013
[11] G. Froyland, Detecting and locating near-optimal almost-invariant sets and cycles,, SIAM Journal on Scientific Computing, 24, 1839 (2003) · Zbl 1042.37063 · doi:10.1137/S106482750238911X
[12] G. Froyland, On fast computation of finite-time coherent sets using radial basis functions,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25 (2015) · Zbl 1422.65448 · doi:10.1063/1.4927640
[13] G. Froyland, Estimating long term behavior of flows without trajectory integration: The infinitesimal generator approach,, SIAM Journal on Numerical Analysis, 51, 223 (2013) · Zbl 1267.37101 · doi:10.1137/110819986
[14] G. Froyland, Estimating long-term behavior of periodically driven flows without trajectory integration,, <a href= · Zbl 1380.37143
[15] G. Froyland, Almost-invariant and finite-time coherent sets: Directionality, duration, and diffusion,, in Ergodic Theory, 70, 171 (2014) · Zbl 1352.37078 · doi:10.1007/978-1-4939-0419-8_9
[16] A. Hadjighasem, Spectral-clustering approach to lagrangian vortex detection,, Phys. Rev. E, 93 (2016) · doi:10.1103/PhysRevE.93.063107
[17] G. Haller, Distinguished material surfaces and coherent structures in three-dimensional fluid flows,, Physica D, 149, 248 (2001) · Zbl 1015.76077 · doi:10.1016/S0167-2789(00)00199-8
[18] G. Haller, A variational theory of hyperbolic Lagrangian coherent structures,, Physica D, 240, 574 (2011) · Zbl 1214.37056 · doi:10.1016/j.physd.2010.11.010
[19] G. Haller, Lagrangian coherent structures and mixing in two-dimensional turbulence,, Physica D, 147, 352 (2000) · Zbl 0970.76043 · doi:10.1016/S0167-2789(00)00142-1
[20] W. Huisinga, Metastability and dominant eigenvalues of transfer operators,, in New Algorithms for Macromolecular Simulation, 49, 167 (2006) · Zbl 1207.82021 · doi:10.1007/3-540-31618-3_11
[21] O. Junge, Uncertainty in the dynamics of conservative maps,, in Proceedings of the 43rd IEEE Conference on Decision and Control, 2, 2225 (2004) · doi:10.1109/CDC.2004.1430379
[22] A.-K. Kassam, Fourth-order time-stepping for stiff pdes,, SIAM Journal on Scientific Computing, 26, 1214 (2005) · Zbl 1077.65105 · doi:10.1137/S1064827502410633
[23] A. Lasota, <em>Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics</em>,, Second edition. Applied Mathematical Sciences (1994) · Zbl 0784.58005 · doi:10.1007/978-1-4612-4286-4
[24] T. Y. Li, Finite Approximation for the Frobenius-Perron Operator. A Solution to Ulam’s Conjecture,, J. Approx. Theory, 17, 177 (1976) · Zbl 0357.41011 · doi:10.1016/0021-9045(76)90037-X
[25] J.-C. Nave, <em>Computational Science and Engineering</em>,, 2008 (2015)
[26] B. Oksendal, <em>Stochastic Differential Equations: An Introduction with Applications</em>,, Springer · Zbl 0897.60056
[27] C. Schütte, A direct approach to conformational dynamics based on hybrid monte carlo,, Journal of Computational Physics, 151, 146 (1999) · Zbl 0933.65145 · doi:10.1006/jcph.1999.6231
[28] S. M. Ulam, <em>Problems in Modern Mathematics</em>,, Courier Dover Publications (2004) · Zbl 0137.24201
[29] T. A. Zang, On the rotation and skew-symmetric forms for incompressible flow simulations,, Applied Numerical Mathematics, 7, 27 (1991) · Zbl 0708.76071 · doi:10.1016/0168-9274(91)90102-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.