Skip to main content

Metastability and Dominant Eigenvalues of Transfer Operators

  • Chapter
New Algorithms for Macromolecular Simulation

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 49))

Abstract

Metastability is an important characteristic of molecular systems, e.g., when studying conformation dynamics, computing transition paths or speeding up Markov chain Monte Carlo sampling methods. In the context of Markovian (molecular) systems, metastability is closely linked to spectral properties of transfer operators associated with the dynamics. In this article, we prove upper and lower bounds for the metastability of a state-space decomposition for reversible Markov processes in terms of dominant eigenvalues and eigenvectors of the corresponding transfer operator. The bounds are explicitly computable, sharp, and do not rely on any asymptotic expansions in terms of some smallness parameter, but rather hold for arbitrary transfer operators satisfying a reasonable spectral condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 129.00
Price excludes VAT (USA)
Softcover Book
USD 169.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Bandle. Isoperimetric Inequalities and Applications. Pitman, Boston, London, Melbourne, 1980.

    MATH  Google Scholar 

  2. Anton Bovier, Michael Eckhoff, Véronique Gayrard, and Markus Klein. Metastability in stochastic dynamics of disordered mean-field models. Probab. Theor. Rel. Fields, 119:99–161, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  3. Anton Bovier, Michael Eckhoff, Véronique Gayrard, and Markus Klein. Metastability and low lying spectra in reversible Markov chains. Com. Math. Phys., 228:219–255, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  4. Anton Bovier, Michael Eckhoff, Véronique Gayrard, and Markus Klein. Metastability in reversible diffusion processes I: Sharp estimates for capacities and exit times. J. Eur. Math. Soc., 6:399–424, 2004.

    MathSciNet  MATH  Google Scholar 

  5. Anton Bovier, Véronique Gayrard, and Markus Klein. Metastability in reversible diffusion processes II: Precise estimates for small eigenvalues. J. Eur. Math. Soc., 7:69–99, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  6. Edward Brian Davies. Metastability and the Ising model. J. Statist. Phys, 27:657–675, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  7. Edward Brian Davies. Metastable states of symmetric Markov semigroups I. Proc. London Math. Soc., 45(3):133–150, 1982.

    MATH  MathSciNet  Google Scholar 

  8. Edward Brian Davies. Metastable states of symmetric Markov semigroups II. J. London Math. Soc., 26(2):541–556, 1982.

    MATH  MathSciNet  Google Scholar 

  9. Peter Deuflhard, Wilhelm Huisinga, Alexander Fischer, and Christof Schütte. Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains. Lin. Alg. Appl., 315:39–59, 2000.

    Article  MATH  Google Scholar 

  10. Michael Dellnitz and Oliver Junge. On the approximation of complicated dynamical behavior. SIAM J. Num. Anal., 36(2):491–515, 1999.

    Article  MathSciNet  Google Scholar 

  11. M. Dellnitz, O. Junge, W.S. Koon, F. Lekien, M.W. Lo, J.E. Marsden, K. Padberg R. Preis, S.D. Ross, and B. Thiere. Transport in dynamical astronomy and multibody problems. International Journal of Bifurcation and Chaos, 2005. to appear.

    Google Scholar 

  12. J. L. Doob. Stochastic Processes. John Wiley & Sons, Inc., New York, 1953.

    MATH  Google Scholar 

  13. P. Deuflhard and Ch. Schütte. Molecular conformation dynamics and computational drug design. In J.M. Hill and R. Moore, editors, Applied Mathematics Entering the 21st Century, Proc. ICIAM 2003, pages 91–119, Sydney, Australia, 7-11 July 2004.

    Google Scholar 

  14. P. Deuflhard and M. Weber. Robust Perron cluster analysis in conformation dynamics. Lin. Alg. Appl.-Special issue on Matrices and Mathematical Biology. In Dellnitz, S. Kirkland, M. Neumann and C. Schütte (eds.), 398C:161–184, 2004.

    Google Scholar 

  15. Alexander Fischer. An Uncoupling-Coupling Method for Markov chain Monte Carlo simulations with an application to biomolecules. PhD thesis, Free University Berlin, 2003.

    Google Scholar 

  16. M.I. Freidlin and A.D. Wentzell. Random Perturbations of Dynamical Systems. Springer, New York, 1984. Series in Comprehensive Studies in Mathematics.

    MATH  Google Scholar 

  17. C. W. Gardiner. Handbook of Stochastic Methods. Springer, Berlin, 2nd enlarged edition edition, 1985.

    Google Scholar 

  18. Wilhelm Huisinga, Christoph Best, Rainer Roitzsch, Christof Schütte, and Frank Cordes. From simulation data to conformational ensembles: Structure and dynamic based methods. J. Comp. Chem., 20(16):1760–1774, 1999.

    Article  Google Scholar 

  19. I. Horenko, E. Dittmer, A. Fischer, and Ch. Schütte. Automated model reduction for complex systems exhibiting metastability. Multiscale Modeling and Simulation, 2005. submitted.

    Google Scholar 

  20. R. Hassin and M. Haviv. Mean passage times and nearly uncoupled Markov chains. SIAM J. Disc. Math., 5(3):386–397, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  21. Bruce Hendrickson and Robert Leland. An improved spectral graph partitioning algorithm for mapping parallel computations. SIAM J. Sci. Comput., 16(2):452–469, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. J. Hartfiel and C. D. Meyer. On the structure of stochastic matrices with a subdominant eigenvalue near 1. Lin. Alg. Appl., 272:193–203, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  23. Wilhelm Huisinga, Sean Meyn, and Christof Schütte. Phase transitions & metastability in Markovian and molecular systems. Ann. Appl. Probab., 14:419–458, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  24. Wilhelm Huisinga, Christof Schütte, and Andrew M. Stuart. Extracting macroscopic stochastic dynamics: Model problems. Comm. Pure Appl. Math., 56:234–269, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  25. Wilhelm Huisinga. Metastability of Markovian systems: A transfer operator approach in application to molecular dynamics. PhD thesis, Freie Universität Berlin, 2001.

    Google Scholar 

  26. P. Imkeller and A. Monahan. Conceptual stochastic climate models. Stochastics and Dynamics, 2(3):311–326, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  27. Andrzej Lasota and Michael C. Mackey. Chaos, Fractals and Noise, volume 97 of Applied Mathematical Sciences. Springer, New York, 2nd edition, 1994.

    Google Scholar 

  28. C. D. Meyer. Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems. SIAM Rev., 31:240–272, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  29. S.P. Meyn and R.L. Tweedie. Markov Chains and Stochastic Stability. Springer, Berlin, 1993.

    MATH  Google Scholar 

  30. Edward Nelson. Dynamical Theories of Brownian Motion. Mathematical Notes. Princeton Uni. Press, 1967.

    Google Scholar 

  31. D. Revuz. Markov Chains. North-Holland, Amsterdam, Oxford, 1975.

    MATH  Google Scholar 

  32. Hannes Risken. The Fokker-Planck Equation. Springer, New York, 2nd edition, 1996.

    MATH  Google Scholar 

  33. Ch. Schütte. Conformational Dynamics: Modelling, Theory, Algorithm, and Application to Biomolecules. Habilitation Thesis, Fachbereich Mathematik und Informatik, Freie Universität Berlin, 1998.

    Google Scholar 

  34. Ch. Schütte, A. Fischer, W. Huisinga, and P. Deuflhard. A direct approach to conformational dynamics based on hybrid Monte Carlo. J. Comput. Phys., Special Issue on Computational Biophysics, 151:146–168, 1999.

    MATH  Google Scholar 

  35. Christof Schütte and Wilhelm Huisinga. Biomolecular conformations can be identified as metastable sets of molecular dynamics. In P. G. Ciarlet, editor, Handbook of Numerical Analysis, volume Special Volume Computational Chemistry, pages 699–744. North-Holland, 2003.

    Google Scholar 

  36. Christof Schütte, Wilhelm Huisinga, and Peter Deuflhard. Transfer operator approach to conformational dynamics in biomolecular systems. In Bernold Fiedler, editor, Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, pages 191–223. Springer, 2001.

    Google Scholar 

  37. Gregory Singleton. Asymptotically exact estimates for metatstable Markov semigroups. Quart. J. Math. Oxford, 35(2):321–329, 1984.

    MATH  MathSciNet  Google Scholar 

  38. Alistair Sinclair. Algorithms for Random Generation and Counting-A Markov Chain Approach. Progress in Theoretical Computer Science. Birkhäuser, 1993.

    Google Scholar 

  39. John Stachurski. Stochastic growth with increasing returns: Stability and path dependence. Studies in Nonlinear Dynamics & Econometrics, 7(2):1104–1104, 2003.

    Article  Google Scholar 

  40. Christof Schütte, Jessika Walter, Carsten Hartmann, and Wilhelm Huisinga. An averaging principle for fast degrees of freedom exhibiting long-term correlations. SIAM Multiscale Modeling and Simulation, 2:501–526, 2004.

    Article  MATH  Google Scholar 

  41. W. F. van Gunsteren, S. R. Billeter, A. A. Eising, P. H. Hünenberger, P. Krüger, A. E. Mark, W. R. P. Scott, and I. G. Tironi. Biomolecular Simulation: The GROMOS96 Manual and User Guide. vdf Hochschulverlag AG, ETH Zürich, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huisinga, W., Schmidt, B. (2006). Metastability and Dominant Eigenvalues of Transfer Operators. In: Leimkuhler, B., et al. New Algorithms for Macromolecular Simulation. Lecture Notes in Computational Science and Engineering, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31618-3_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-31618-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25542-0

  • Online ISBN: 978-3-540-31618-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics