×

Residual based error estimate and quasi-interpolation on polygonal meshes for high order BEM-based FEM. (English) Zbl 1368.65238

Summary: Only a few numerical methods can treat boundary value problems on polygonal and polyhedral meshes. The BEM-based Finite Element Method is one of the new discretization strategies, which make use of and benefits from the flexibility of these general meshes that incorporate hanging nodes naturally. The article in hand addresses quasi-interpolation operators for the approximation space over polygonal meshes. To prove interpolation estimates the Poincaré constant is bounded uniformly for patches of star-shaped elements. These results give rise to the residual based error estimate for high order BEM-based FEM and its reliability as well as its efficiency are proven. Such a posteriori error estimates can be used to gauge the approximation quality and to implement adaptive FEM strategies. Numerical experiments show optimal rates of convergence for meshes with non-convex elements on uniformly as well as on adaptively refined meshes.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N38 Boundary element methods for boundary value problems involving PDEs

References:

[1] Verfürth, R., (A Posteriori Error Estimation Techniques for Finite Element Methods. A Posteriori Error Estimation Techniques for Finite Element Methods, Numerical Mathematics and Scientific Computation (2013), Oxford University Press: Oxford University Press Oxford) · Zbl 1279.65127
[2] Copeland, D.; Langer, U.; Pusch, D., From the boundary element domain decomposition methods to local Trefftz finite element methods on polyhedral meshes, (Domain Decomposition Methods in Science and Engineering XVIII. Domain Decomposition Methods in Science and Engineering XVIII, Lect. Notes Comput. Sci. Eng., vol. 70 (2009), Springer: Springer Berlin, Heidelberg), 315-322 · Zbl 1183.65158
[3] Hofreither, C.; Langer, U.; Pechstein, C., Analysis of a non-standard finite element method based on boundary integral operators, Electron. Trans. Numer. Anal., 37, 413-436 (2010) · Zbl 1205.65315
[4] Hofreither, C., \(L_2\) error estimates for a nonstandard finite element method on polyhedral meshes, J. Numer. Math., 19, 1, 27-39 (2011) · Zbl 1222.65119
[5] Rjasanow, S.; Weißer, S., Higher order BEM-based FEM on polygonal meshes, SIAM J. Numer. Anal., 50, 5, 2357-2378 (2012) · Zbl 1264.65196
[6] Weißer, S., Arbitrary order Trefftz-like basis functions on polygonal meshes and realization in BEM-based FEM, Comput. Math. Appl., 67, 7, 1390-1406 (2014) · Zbl 1350.65131
[7] Weißer, S., Higher order Trefftz-like Finite Element Method on meshes with L-shaped elements, (Steinmann, G. L.P., Special Issue: 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Erlangen 2014. Special Issue: 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Erlangen 2014, PAMM, vol. 14 (2014), WILEY-VCH Verlag), 31-34
[8] Efendiev, Y.; Galvis, J.; Lazarov, R.; Weißer, S., Mixed FEM for second order elliptic problems on polygonal meshes with BEM-based spaces, (Lirkov, I.; Margenov, S.; Waśniewski, J., Large-Scale Scientific Computing. Large-Scale Scientific Computing, Lecture Notes in Computer Science (2014), Springer: Springer Berlin, Heidelberg), 331-338 · Zbl 07238847
[9] Hofreither, C.; Langer, U.; Weißer, S., Convection adapted BEM-based FEM, ZAMM Z. Angew. Math. Mech., 96, 12, 1467-1481 (2016) · Zbl 1538.65520
[10] Rjasanow, S.; Weißer, S., FEM with Trefftz trial functions on polyhedral elements, J. Comput. Appl. Math., 263, 202-217 (2014) · Zbl 1301.65125
[11] Weißer, S., BEM-based finite element method with prospects to time dependent problems, (Oñate, E.; Oliver, J.; Huerta, A., Proceedings of the Jointly Organized WCCM XI, ECCM V, ECFD VI, Barcelona, Spain, July 2014 (2014), International Center for Numerical Methods in Engineeering (CIMNE)), 4420-4427
[12] Hofreither, C.; Langer, U.; Pechstein, C., FETI solvers for non-standard finite element equations based on boundary integral operators, (Erhel, J.; Gander, M.; Halpern, L.; Pichot, G.; Sassi, T.; Widlund, O., Domain Decomposition Methods in Science and Engineering XXI. Domain Decomposition Methods in Science and Engineering XXI, Lect. Notes Comput. Sci. Eng., vol. 98 (2014), Springer: Springer Heidelberg), 731-738
[13] Weißer, S., Residual error estimate for BEM-based FEM on polygonal meshes, Numer. Math., 118, 4, 765-788 (2011) · Zbl 1227.65103
[14] Weißer, S., Residual based error estimate for higher order Trefftz-like trial functions on adaptively refined polygonal meshes, (Abdulle, A.; Deparis, S.; Kressner, D.; Nobile, F.; Picasso, M., Numerical Mathematics and Advanced Applications - ENUMATH 2013. Numerical Mathematics and Advanced Applications - ENUMATH 2013, Lecture Notes in Computational Science and Engineering, vol. 103 (2015), Springer International Publishing), 233-241 · Zbl 1328.65258
[15] Beirão da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L.; Russo, A., Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23, 01, 199-214 (2013) · Zbl 1416.65433
[16] Wang, J.; Ye, X., A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp., 83, 289, 2101-2126 (2014) · Zbl 1308.65202
[17] Dolejší, V.; Feistauer, M.; Sobotíková, V., Analysis of the discontinuous Galerkin method for nonlinear convection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 194, 25-26, 2709-2733 (2005) · Zbl 1093.76034
[18] Beirão da Veiga, L.; Lipnikov, K.; Manzini, G., Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes, SIAM J. Numer. Anal., 49, 5, 1737-1760 (2011) · Zbl 1242.65215
[19] Beirão da Veiga, L.; Lipnikov, K.; Manzini, G., (The Mimetic Finite Difference Method for Elliptic Problems. The Mimetic Finite Difference Method for Elliptic Problems, MS&A. Modeling, Simulation and Applications, vol. 11 (2014), Springer International Publishing) · Zbl 1286.65141
[20] Karakashian, O. A.; Pascal, F., A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal., 41, 6, 2374-2399 (2003), (electronic) · Zbl 1058.65120
[21] Beirão da Veiga, L.; Manzini, G., Residual a posteriori error estimation for the virtual element method for elliptic problems, ESAIM Math. Model. Numer. Anal., 49, 2, 577-599 (2015) · Zbl 1346.65056
[22] Chen, L.; Wang, J.; Ye, X., A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 59, 2, 496-511 (2014) · Zbl 1307.65153
[24] Antonietti, P. F.; Beirão da Veiga, L.; Lovadina, C.; Verani, M., Hierarchical a posteriori error estimators for the mimetic discretization of elliptic problems, SIAM J. Numer. Anal., 51, 1, 654-675 (2013) · Zbl 1267.65159
[25] Adams, R. A., Sobolev Spaces (1975), Academic Press · Zbl 0186.19101
[26] McLean, W. C.H., Strongly Elliptic Systems and Boundary Integral Equations (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0948.35001
[27] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland Amsterdam · Zbl 0445.73043
[28] Karachik, V.; Antropova, N., On the solution of the inhomogeneous polyharmonic equation and the inhomogeneous Helmholtz equation, Differential Equations, 46, 3, 387-399 (2010) · Zbl 1194.31007
[29] Steinbach, O., Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements (2007), Springer: Springer New York
[30] Brenner, S.; Scott, L., (The Mathematical Theory of Finite Element Methods. The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, vol. 15 (2002), Springer: Springer New York) · Zbl 1012.65115
[31] Mousavi, S. E.; Sukumar, N., Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons, Comput. Mech., 47, 535-554 (2011) · Zbl 1221.65078
[32] Clément, P., Approximation by finite element functions using local regularization, Rev. Français. Autom. Inform. Rech. Opér. Sér. RAIRO Anal. Numér., 9, R-2, 77-84 (1975) · Zbl 0368.65008
[33] Veeser, A.; Verfürth, R., Poincaré constants for finite element stars, IMA J. Numer. Anal., 32, 1, 30-47 (2012) · Zbl 1235.65127
[34] Dupont, T.; Scott, R., Polynomial approximation of functions in Sobolev spaces, Math. Comp., 34, 150, 441-463 (1980) · Zbl 0423.65009
[35] Payne, L. E.; Weinberger, H. F., An optimal Poincaré inequality for convex domains, Arch. Ration. Mech. Anal., 5, 286-292 (1960) · Zbl 0099.08402
[36] Ainsworth, M.; Oden, T. J., (A Posteriori Error Estimation in Finite Element Analysis. A Posteriori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics (New York) (2000), Wiley-Interscience [John Wiley & Sons]: Wiley-Interscience [John Wiley & Sons] New York) · Zbl 1008.65076
[37] Dörfler, W., A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal., 33, 3, 1106-1124 (1996) · Zbl 0854.65090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.