×

Convection-adapted BEM-based FEM. (English) Zbl 1538.65520

Summary: We present a new discretization method for convection-diffusion-reaction boundary value problems in 3D with PDE-harmonic shape functions on polyhedral elements. The element stiffness matrices are constructed by means of local boundary element techniques. Our method, which we refer to as a BEM-based FEM, can therefore be considered as a local Trefftz method with element-wise (locally) PDE-harmonic shape functions. The Dirichlet boundary data for these shape functions is chosen according to a convection-adapted procedure which solves projections of the PDE onto the edges and faces of the elements. This improves the stability of the discretization method for convection-dominated problems both when compared to a standard FEM and to previous BEM-based FEM approaches, as we demonstrate in several numerical experiments. Our experiments also show an improved resolution of the exponential layer at the outflow boundary for our proposed method when compared to the SUPG method.
{© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim}

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N38 Boundary element methods for boundary value problems involving PDEs
35A15 Variational methods applied to PDEs

References:

[1] L. BeiraodaVeiga, F.Brezzi, L. D.Marini, and A.Russo, Virtual Element Method for general second‐order elliptic problems on polygonal meshes, Math. Models Methods Appl. Sci.26(4), 729-750 (2016). · Zbl 1332.65162
[2] L. BeiraodaVeiga, K.Lipnikov, and G.Manzini, Arbitrary‐order nodal mimetic discretizations of elliptic problems on polygonal meshes, SIAM J. Numer. Anal.49(5), 1737-1760 (2011). · Zbl 1242.65215
[3] F.Brezzi, M. O.Bristeau, L. P.Franca, M.Mallet, and G.Rogé, A relationship between stabilized finite element methods and the Galerkin method with bubble functions, Comput. Meth. Appl. Mech. Engrg.96(1), 117-129 (1992). · Zbl 0756.76044
[4] F.Brezzi, L. P.Franca, T. J. R.Hughes, and A.Russo, \( b = \int g\), Comput. Meth. Appl. Mech. Engrg.145(3-4), 329-339 (1997). · Zbl 0904.76041
[5] F.Brezzi, T. J. R.Hughes, L. D.Marini, A.Russo, and E.Süli, A priori error analysis of residual‐free bubbles for advection‐diffusion problems, SIAM J. Numer. Anal36(6), 1933-1948 (1999). · Zbl 0947.65115
[6] F.Brezzi, D.Marini, and A.Russo, Applications of the pseudo residual‐free bubbles to the stabilization of convection‐diffusion problems, Comput. Meth. Appl. Mech. Engrg.166(1-2), 51-63 (1998). · Zbl 0932.65113
[7] A. N.Brooks and T. J. R.Hughes, Streamline upwind/Petrov‐Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier‐Stokes equations, Comput. Method. Appl. M.32(1‐3), 199-259 (1982). · Zbl 0497.76041
[8] D.Copeland, U.Langer, and D.Pusch, From the boundary element domain decomposition methods to local Trefftz finite element methods on polyhedral meshes, in: Domain Decomposition Methods in Science and Engineering XVIII, edited by M.Bercovier (ed.), M.Gander (ed.), R.Kornhuber (ed.), and O.Widlund (ed.), Lect. Notes Comput. Sci. Eng. Vol. 70 (Springer, Berlin Heidelberg, 2009), pp. 315-322. · Zbl 1183.65158
[9] M.Costabel, Symmetric methods for the coupling of finite elements and boundary elements, in: Boundary Elements IX, edited by C.Brebbia (ed.), W.Wendland (ed.), and G.Kuhn (ed.) (Springer, Berlin, Heidelberg, New York, 1987), pp. 411-420.
[10] M.Costabel, Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math. Anal.19(3), 613-626 (1988). · Zbl 0644.35037
[11] J.Droniou, Non‐coercive linear elliptic problems, Potential Anal.17, 181-203 (2002). · Zbl 1161.35362
[12] Y.Efendiev, J.Galvis, R.Lazarov, and S.Weißer, Mixed FEM for second order elliptic problems on polygonal meshes with BEM‐based spaces, in: Large‐Scale Scientific Computing, edited by I.Lirkov (ed.), S.Margenov (ed.), and J. Waśniewski, Lect. (ed.)Notes Comput. Sc. (Springer, Berlin Heidelberg, 2014), pp. 331-338. · Zbl 07238847
[13] L. P.Franca, A.Nesliturk, and M.Stynes, On the stability of residual‐free bubbles for convection‐diffusion problems and their approximation by a two‐level finite element method, Comput. Meth. Appl. Mech. Engrg.166(1-2), 35-49 (1998). · Zbl 0934.65127
[14] V.Girault and P.Raviart, Finite Element Methods for Navier‐Stokes Equations, Springer Series in Computational Mathematics, Vol. 5 (Springer‐Verlag, Berlin, 1986). · Zbl 0585.65077
[15] D.Gordon and R.Gordon, Row scaling as a preconditioner for some nonsymmetric linear systems with discontinuous coefficients, J. Comput. Appl. Math.234(12), 3480-3495 (2010). · Zbl 1196.65066
[16] F.Hecht, New development in FreeFem++, J. Numer. Math.20(3‐4), 251-265 (2012). · Zbl 1266.68090
[17] C.Hofreither, L_2 error estimates for a nonstandard finite element method on polyhedral meshes, J. Numer. Math.19(1), 27-39 (2011). · Zbl 1222.65119
[18] C.Hofreither, A Non‐standard Finite Element Method using Boundary Integral Operators, PhD thesis, Johannes Kepler University, Linz, Austria, December 2012.
[19] C.Hofreither, U.Langer, and C.Pechstein, Analysis of a non‐standard finite element method based on boundary integral operators, Electron. Trans. Numer. Anal.37, 413-436 (2010). · Zbl 1205.65315
[20] C.Hofreither, U.Langer, and C.Pechstein, A Non‐standard Finite Element Method for Convection‐Diffusion‐Reaction Problems on Polyhedral Meshes, AIP Conf. Proc.1404(1), 397-404 (2011).
[21] C.Hofreither, U.Langer, and C.Pechstein, FETI solvers for non‐standard finite element equations based on boundary integral operators, in: Domain Decomposition Methods in Science and Engineering XXI, edited by J.Erhel (ed.), M.Gander (ed.), L.Halpern (ed.), G.Pichot (ed.), T.Sassi (ed.), and O.Widlund (ed.), Lect. Notes Comput. Sci. Eng. Vol. 98 (Springer, Heidelberg, 2014), pp. 731-738.
[22] C.Hofreither, U.Langer, and C.Pechstein, BEM‐based Finite Element Tearing and Interconnecting methods, Electron. Trans. Numer. Anal.44, 230-249 (2015). · Zbl 1327.65060
[23] G. C.Hsiao, O.Steinbach, and W. L.Wendland, Domain decomposition methods via boundary integral equations, J. Comput. Appl. Math.125(1-2), 521-537 (2000). · Zbl 0971.65111
[24] G. C.Hsiao and W. L.Wendland, Domain decomposition in boundary element methods, in: Proceedings of the Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, Moscow, May 21-25, 1990, edited by R.Glowinski (ed.), Y. A.Kuznetsov (ed.), G.Meurant (ed.), J.Périaux (ed.), and O. B.Widlund (ed.) (SIAM, Philadelphia, 1991), pp. 41-49. · Zbl 0758.00010
[25] G. C.Hsiao and W. L.Wendland, Boundary Integral Equations (Springer, Heidelberg, 2008). · Zbl 1157.65066
[26] V.John and P.Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection‐diffusion equations: Part I - A review, Comput. Methods Appl. Mech. Engrg.196(17-20), 2197-2215 (2007). · Zbl 1173.76342
[27] N.Kopteva and E.O’Riordan, Shishkin meshes in the numerical solution of singularly perturbed differential equations, Int. J. Numer. Anal. Mod.7(3), 393-415 (2010). · Zbl 1197.65094
[28] U.Langer and O.Steinbach, Coupled finite and boundary element domain decomposition methods, in: Boundary Element Analysis: Mathematical Aspects and Application, edited by M.Schanz (ed.) and O.Steinbach (ed.), Lecture Notes in Applied and Computational Mechanic Vol. 29 (Springer, Berlin, 2007), pp. 29-59.
[29] T.Linß, Layer‐adapted Meshes for Reaction‐Convection‐Diffusion Problem, Lecture Notes in Mathematics, Vol. 1985 (Springer‐Verlag, Berlin, 2010). · Zbl 1202.65120
[30] W.McLean, Strongly Elliptic Systems and Boundary Integral Equations (Cambridge University Press, Cambridge, UK, 2000). · Zbl 0948.35001
[31] S.Rjasanow and S.Weißer, Higher order BEM‐based FEM on polygonal meshes, SIAM J. Numer. Anal.50(5), 2357-2378 (2012). · Zbl 1264.65196
[32] S.Rjasanow and S.Weißer, FEM with Trefftz trial functions on polyhedral elements, J. Comput. Appl. Math.263, 202-217 (2014). · Zbl 1301.65125
[33] H. G.Roos, M.Stynes, and L.Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, second edition, Springer Series in Computational Mathematics, Vol. 24 (Springer-Verlag, Berlin, 2008). · Zbl 1155.65087
[34] Y.Saad and M. H.Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput.7(3), 856-869 (1986). · Zbl 0599.65018
[35] S. A.Sauter and C.Schwab, Boundary Element Methods, Springer Series in Computational Mathematics, Vol. 39 (Springer, Berlin, Heidelberg, 2011). · Zbl 1215.65183
[36] G. I.Shishkin, A difference scheme for a singularly perturbed equation of parabolic type with a discontinuous initial condition, Dokl. Akad. Nauk SSSR300(5), 1066-1070 (1988).
[37] O.Steinbach, Mixed approximation for boundary elements, SIAM J. Numer. Anal.38, 401-413 (2000). · Zbl 0977.65107
[38] O.Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems, Finite and Boundary Elements (Springer‐Verlag, New York, 2008). · Zbl 1153.65302
[39] S.Weißer, Residual error estimate for BEM‐based FEM on polygonal meshes, Numer. Math.118(4), 765-788 (2011). · Zbl 1227.65103
[40] S.Weißer, Finite Element Methods with local Trefftz trial functions, PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, September 2012.
[41] S.Weißer, Arbitrary order Trefftz‐like basis functions on polygonal meshes and realization in BEM‐based FEM, Comput. Math. Appl.67(7), 1390-1406 (2014). · Zbl 1350.65131
[42] S.Weißer, BEM‐based finite element method with prospects to time dependent problems, in: Proceedings of the jointly organized WCCM XI, ECCM V, ECFD VI, Barcelona, Spain, July 2014, edited by E. Onate (ed.), J.Oliver (ed.), and A.Huerta (ed.) (International Center for Numerical Methods in Engineeering (CIMNE), 2014), pp. 4420-4427.
[43] S.Weißer, Higher order Trefftz‐like Finite Element Method on meshes with L‐shaped elements, in: Special Issue: 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Erlangen 2014, edited by G. L. P.Steinmann (ed.), PAMM Vol. 14 (WILEY‐VCH Verlag, 2014), pp. 31-34.
[44] S.Weißer, Residual based error estimate and quasi‐interpolation on polygonal meshes for high order BEM‐based FEM, ArXiv e‐prints (2015), arXiv:1511.08993.
[45] S.Weißer, Residual Based Error Estimate for Higher Order Trefftz‐Like Trial Functions on Adaptively Refined Polygonal Meshes, in: Numerical Mathematics and Advanced Applications ‐ ENUMATH 2013, edited by A.Abdulle (ed.), S.Deparis (ed.), D.Kressner (ed.), F.Nobile (ed.), and M.Picasso (ed.), Lect. Notes Comput. Sci. Eng. Vol. 103 (Springer International Publishing, 2015), pp. 233-241. · Zbl 1328.65258
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.