×

Non-linear viscoelastic behavior of polymer melts interpreted by fractional viscoelastic model. (English) Zbl 1367.74011

Summary: Very recently, researchers dealing with constitutive law pertinent viscoelastic materials put forward the successful idea to introduce viscoelastic laws embedded with fractional calculus, relating the stress function to a real order derivative of the strain function. The latter consideration leads to represent both, relaxation and creep functions, through a power law function. In literature there are many papers in which the best fitting of the peculiar viscoelastic functions using a fractional model is performed. However there are not present studies about best fitting of relaxation function and/or creep function of materials that exhibit a non-linear viscoelastic behavior, as polymer melts, using a fractional model. In this paper the authors propose an advanced model for capturing the non-linear trend of the shear viscosity of polymer melts as function of the shear rate. Results obtained with the fractional model are compared with those obtained using a classical model which involves classical Maxwell elements. The comparison between experimental data and the theoretical model shows a good agreement, emphasizing that fractional model is proper for studying viscoelasticity, even if the material exhibits a non-linear behavior.

MSC:

74D10 Nonlinear constitutive equations for materials with memory
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Flügge W (1967) Viscoelasticity. Blaisdell Publishing Company, Waltham · Zbl 0352.73033
[2] Pipkin A (1972) Lectures on viscoelasticity theory. Springer, New York · Zbl 0237.73022 · doi:10.1007/978-1-4615-9970-8
[3] Christensen RM (1982) Theory of viscoelasticity: an introduction. Academic Press, New York
[4] Ferry JD (1970) Viscoelastic properties of polymers. Wiley, New York
[5] Schmidt A, Gaul L (2002) Finite element formulation of viscoelastic constitutive equations using fractional time derivatives. Nonlinear Dyn 29:37-55 · Zbl 1028.74013 · doi:10.1023/A:1016552503411
[6] Di Paola M, Failla G, Pirrotta A (2012) Stationary and non-stationary stochastic response of linear fractional viscoelastic systems. Probab Eng Mech 28:85-90 · doi:10.1016/j.probengmech.2011.08.017
[7] Di Paola M, Heuer R, Pirrotta A (2013) Fractional visco-elastic Euler-Bernoulli beam. Int J Solids Struct 50:3505-3510 · doi:10.1016/j.ijsolstr.2013.06.010
[8] Di Lorenzo S, Di Paola M, Pinnola FP, Pirrotta A (2014) Stochastic response of fractionally damped beams. Probab Eng Mech 35:37-43 · doi:10.1016/j.probengmech.2013.09.008
[9] Alotta G, Di Paola M, Pirrotta A (2014) Fractional Tajimi-Kanai model for simulating earthquake ground motion. Bull Earthq Eng (BEEE) 12:2495-2506 · doi:10.1007/s10518-014-9615-z
[10] Pirrotta A, Cutrona S, Di Lorenzo S (2015) Fractional visco-elastic Timoshenko beam from elastic Euler-Bernoulli beam. Acta Mech 226:179-189 · Zbl 1326.74077 · doi:10.1007/s00707-014-1144-y
[11] Pirrotta A, Cutrona S, Di Lorenzo S, Di Matteo A (2015) Fractional visco-elastic Timoshenko beam deflection via single equation. Int J Numer Meth Eng 104:869-886 · Zbl 1352.74155 · doi:10.1002/nme.4956
[12] Bucher C, Pirrotta A (2015) Dynamic finite element analysis of fractionally damped, structural systems in the time domain. Acta Mech 226:3977-3990 · Zbl 1336.74064 · doi:10.1007/s00707-015-1454-8
[13] Gonsovski VL, Rossikhin YA (1973) Stress waves in a viscoelastic medium with a singular hereditary kernel. J Appl Mech Tech Phys 14:595-597 · doi:10.1007/BF01201257
[14] Schiessel H, Blumen A (1993) Hierarchical analogues to fractional relaxation equations. J Phys A 26:5057-5069 · doi:10.1088/0305-4470/26/19/034
[15] Stiassnie M (1973) On the application of fractional calculus on the formulation of viscoelastic models. Appl Math Model 3:300-302 · Zbl 0419.73038 · doi:10.1016/S0307-904X(79)80063-3
[16] Bagley RL, Torvik PJ (1979) A generalized derivative model for an elastomer damper. Shock Vib Bull 49:135-143
[17] Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus. J Rheol 27:201-210 · Zbl 0515.76012 · doi:10.1122/1.549724
[18] Bagley RL, Torvik PJ (1983) Fractional calculus: a different approach to the analysis of viscoelastically damped structures. Am Inst Aeronaut Astronaut (AIAA) J 20:741-774 · Zbl 0514.73048 · doi:10.2514/3.8142
[19] Bagley RL, Torvik PJ (1986) On the fractional calculus model of viscoelastic behavior. J Rheol 30:133-155 · Zbl 0613.73034 · doi:10.1122/1.549887
[20] Hilfer R (2000) Applications of fractional calculus in physics. World Scientific, Singapore · Zbl 0998.26002 · doi:10.1142/3779
[21] Mainardi F, Gorenflo R (2007) Time-fractional derivatives in relaxation processes: a tutorial survey. Fract Calc Appl Anal 10:269-308 · Zbl 1157.26304
[22] Evangelatos GI, Spanos PD (2011) An accelerated newmark scheme for integrating the equation of motion of nonlinear systems comprising restoring elements governed by fractional derivatives. Recent Adv Mech 1:159-177 · doi:10.1007/978-94-007-0557-9_9
[23] Failla G, Pirrotta A (2012) On the stochastic response of a fractionally-damped duffing oscillator. Commun Nonlinear Sci Numer Simul 17:5131-5142 · Zbl 1417.74024 · doi:10.1016/j.cnsns.2012.03.033
[24] Di Matteo A, Lo Iacono F, Navarra G, Pirrotta A (2015) Innovative modeling of tuned liquid column damper motion. Commun Nonlinear Sci Numer Simul 23:229-244 · doi:10.1016/j.cnsns.2014.11.005
[25] Cao L, Pu H, Li Y, Li M (2016) Time domain analysis of the weighted distributed order rheological model. Mech Time-Depend Mater. doi:10.1007/s11043-016-9314-z · doi:10.1007/s11043-016-9314-z
[26] Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives. Gordon and Breach Science, Amsterdam · Zbl 0818.26003
[27] Podlubny I (1999) Fractional differential equations. Academic Press, New York · Zbl 0924.34008
[28] Nutting PG (1921) A new general law deformation. J Franklin Inst 191:678-685 · doi:10.1016/S0016-0032(21)90171-6
[29] Gemant A (1936) A method of analyzing experimental results obtained by elasto-viscous bodies. Physics 7:311-317 · doi:10.1063/1.1745400
[30] Di Paola M, Pirrotta A, Valenza A (2011) Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results. Mech Mater 43:799-806 · doi:10.1016/j.mechmat.2011.08.016
[31] Celauro C, Fecarotti C, Pirrotta A, Collop AC (2012) Experimental validation of a fractional model for creep/recovery testing of asphalt mixtures. Constr Build Mater 36:458-466 · doi:10.1016/j.conbuildmat.2012.04.028
[32] Fecarotti C, Celauro C, Pirrotta A (2012) Linear VISCOELAstic (LVE) behaviour of pure bitumen via fractional model. Procedia Soc Behav Sci 53:450-461 · doi:10.1016/j.sbspro.2012.09.896
[33] Di Paola M, Fiore V, Pinnola FP, Valenza A (2014) On the influence of the initial ramp for a correct definition of the parameters of fractional viscoelastic materials. Mech Mater 69:63-70 · doi:10.1016/j.mechmat.2013.09.017
[34] Cataldo E, Di Lorenzo S, Fiore V, Maurici M, Nicoletti F, Pirrotta A, Scaffaro R, Valenza A (2015) Bending test for capturing the vivid behavior of giant reeds, returned through a proper fractional visco-elastic model. Mech Mater 89:159-168 · doi:10.1016/j.mechmat.2015.06.006
[35] Celauro C, Fecarotti C, Pirrotta A (2015) An extension of the fractional model for construction of asphalt binder master curve. Eur J Environ Civil Eng. doi:10.1080/19648189.2015.1095685 · doi:10.1080/19648189.2015.1095685
[36] Welch SWJ, Rorrer RAL, Duren RG (1999) Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials. Mech Time-Depend Mater 3:279-303 · doi:10.1023/A:1009834317545
[37] Eldred LB, Baker WP, Palazotto AN (1996) Numerical application of fractional derivative model constitutive relations for viscoelastic materials. Comput Struct 60:875-882 · Zbl 0918.73389 · doi:10.1016/0045-7949(95)00447-5
[38] Pritz T (1996) Analysis of four-parameter fractional derivative model of real solid materials. J Sound Vib 195:103-115 · Zbl 1235.34026 · doi:10.1006/jsvi.1996.0406
[39] Acierno D, La Mantia FP, Marrucci G, Titomanlio G (1976) A non-linear viscoelastic model with structure-dependent relaxation times: I—basic formulation. J Nonnewton Fluid Mech 1:125-146 · doi:10.1016/0377-0257(76)80012-2
[40] Acierno D, La Mantia FP, Marrucci G, Titomanlio G (1976) A non-linear viscoelastic model with structure-dependent relaxation times: II—Comparison with L.D. polyethylene transient stress. J Nonnewton Fluid Mech 1:147-157 · doi:10.1016/0377-0257(76)80013-4
[41] Green MS, Tobolsky AB (1946) A new approach to the theory of relaxing polymeric media. J Chem Phys 14:80-92 · doi:10.1063/1.1724109
[42] Lodge AS, Yeen-Jing Wu (1971) Constitutive equations for polymer solutions derived from the bead/spring model of Rouse and Zimm. Rheol Acta 10:539-553 · Zbl 0229.76007
[43] Mariucci G, Titomanlio G, Sarti GC (1973) Testing of a constitutive equation for entangled networks by elongational and shear data of polymer melts. Rheol Acta 12:269-275 · doi:10.1007/BF01635115
[44] Meissner J (2009) Basic parameters, melt rheology, processing and end-use properties of three similar low density polyethylene samples. Pure Appl Chem 42:551-612
[45] Meissner J (1972) Modifications of the Weissenberg rheogoniometer for measurement of transient rheological properties of molten polyethylene under shear: comparison with tensile data. Appl Polym Sci 16:2877-2899 · doi:10.1002/app.1972.070161114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.