Skip to main content
Log in

Dynamic Finite Element analysis of fractionally damped structural systems in the time domain

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Visco-elastic material models with fractional characteristics have been used for several decades. This paper provides a simple methodology for Finite-Element-based dynamic analysis of structural systems with viscosity characterized by fractional derivatives of the strains. In particular, a re-formulation of the well-known Newmark method taking into account fractional derivatives discretized via the Grünwald–Letnikov summation allows the analysis of structural systems using standard Finite Element technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bathe K.J.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (1996)

    Google Scholar 

  2. Bucher C., Wolff S.: slangTNG—scriptable software for stochastic structural analysis. In: DerKiureghian, A., Hajian, A. Reliability and Optimization of Structural Systems, pp. 49–56. American University of Armenia Press, Oakland (2013)

    Google Scholar 

  3. Cataldo, E., Di Lorenzo, S., Fiore, V., Pirrotta, A., Valenza, A.: Bending test for capturing the fractional visco-elastic parameters: theoretical and experimental investigation on giant reeds. In: International Conference on Fractional Differentiation and its Applications. doi:10.1109/ICFDA.2014.6967408 (2014)

  4. Christensen R.M.: Theory of Viscoelasticity: An Introduction. Academic Press, Waltham (1982)

    Google Scholar 

  5. Cortés F., Elejabarrieta M.J.: Finite element formulations for transient dynamic analysis in structural systems with viscoelastic treatments containing fractional derivative models. Int. J. Numer. Methods Eng. 69, 2173–2195 (2007)

    Article  MATH  Google Scholar 

  6. Di Lorenzo, S., Pinnola, F.P., Pirrotta, A.: On the dynamics of fractional visco-elastic beams. In: Proceedings of the ASME 2012 Intermational Mechanical Engineering Congress and Exposition IMECE2012 (2012)

  7. Di Paola M., Pirrotta A., Valenza A.: Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results. Mech. Mater. 43, 799–806 (2011)

    Article  Google Scholar 

  8. Diethelm K., Ford N.J., Freed A.D., Luchko Y.: Algorithms for the fractional calculus; a selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194, 743–773 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Flügge W.: Viscoelasticity. Blaisdell Publishing Company, Massachussetts (1967)

    Google Scholar 

  10. Gemant, A.: A method of analyzing experimental results obtained by elasto-viscous bodies. Physics, 7(8), 311–317 (1936)

  11. Katsikadelis J.T.: Numerical solution of multi-term fractional differential equations. ZAMM 89(7), 593–608 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Katsikadelis J.T.: The BEM for numerical solution of partial fractional differential equations. Comput. Math. Appl. 62, 891–901 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Müller S., Kästner M., Brommund J., Ulbricht V.: On the numerical handling of fractional viscoelastic material models in a fe analysis. Comput. Mech. 51, 999–1012 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nerantzaki M.S., Babouskos N.G.: Vibrations of inhomogeneous anisotropic viscoelastic bodies described with fractional derivative models. Eng. Anal. Bound. Elem. 36, 1894–1907 (2012)

    Article  MathSciNet  Google Scholar 

  15. Nutting P.G.: A new general law of deformation. J. Franklin Inst. 191, 678–685 (1921)

    Article  Google Scholar 

  16. Pipkin A.: Lectures on Viscoelasticity Theory. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  17. Pirrotta A., Cutrona S., Di Lorenzo S.: Fractional visco-elastic timoshenko beam from elastic euler–bernoulli beam. Acta Mech. 226, 179–189 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  18. Przemieniecki J.S.: Theory of Matrix Structural Analysis. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  19. Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives—Theory and Applications. Gordon and Breach Science Publishers, New York (1993)

    MATH  Google Scholar 

  20. Schmidt A., Gaul L.: Finite element formulation of viscoelastic constitutive equations using fractional time derivatives. Nonlinear Dyn. 29, 37–55 (2002)

    Article  MATH  Google Scholar 

  21. Spanos P.D., Evangelatos G.I.: Response of a non-linear system with restoring forces governed by fractional derivatives—time domain simulation and statistical linearization solution. Soil Dyn. Earthq. Eng. 30, 811–821 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Bucher.

Additional information

Christian Bucher was formerly a Visiting Professor at DICAM, Universitá degli Studi di Palermo, Palermo, Italy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucher, C., Pirrotta, A. Dynamic Finite Element analysis of fractionally damped structural systems in the time domain. Acta Mech 226, 3977–3990 (2015). https://doi.org/10.1007/s00707-015-1454-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1454-8

Keywords

Navigation