×

Biharmonic hypersurfaces in a sphere. (English) Zbl 1366.53046

In [Isr. J. Math. 168, 201–220 (2008; Zbl 1172.58004)], A. Balmus et al. conjectured that every biharmonic submanifold in a sphere has constant mean curvature. In the paper under review, the authors prove a Liouville-type theorem for superharmonic functions on a complete manifold and, as a corollary, they obtain a partial affirmative answer to the above conjecture.

MSC:

53C43 Differential geometric aspects of harmonic maps
58E20 Harmonic maps, etc.
53C40 Global submanifolds

Citations:

Zbl 1172.58004
Full Text: DOI

References:

[1] Akutagawa, Kazuo; Maeta, Shun, Biharmonic properly immersed submanifolds in Euclidean spaces, Geom. Dedicata, 164, 351-355 (2013) · Zbl 1268.53068 · doi:10.1007/s10711-012-9778-1
[2] Balmu{\c{s}}, A.; Oniciuc, C., Biharmonic submanifolds with parallel mean curvature vector field in spheres, J. Math. Anal. Appl., 386, 2, 619-630 (2012) · Zbl 1228.53071 · doi:10.1016/j.jmaa.2011.08.019
[3] Balmu{\c{s}}, A.; Montaldo, S.; Oniciuc, C., Classification results for biharmonic submanifolds in spheres, Israel J. Math., 168, 201-220 (2008) · Zbl 1172.58004 · doi:10.1007/s11856-008-1064-4
[4] Balmu{\c{s}}, Adina; Montaldo, Stefano; Oniciuc, Cezar, New results toward the classification of biharmonic submanifolds in \(\mathbb{S}^n\), An. \c Stiin\c t. Univ. “Ovidius” Constan\c ta Ser. Mat., 20, 2, 89-114 (2012) · Zbl 1299.58015
[5] Balmu{\c{s}}, Adina; Montaldo, Stefano; Oniciuc, Cezar, Biharmonic PNMC submanifolds in spheres, Ark. Mat., 51, 2, 197-221 (2013) · Zbl 1282.53047 · doi:10.1007/s11512-012-0169-5
[6] Caddeo, R.; Montaldo, S.; Oniciuc, C., Biharmonic submanifolds of \(S^3\), Internat. J. Math., 12, 8, 867-876 (2001) · Zbl 1111.53302 · doi:10.1142/S0129167X01001027
[7] Caddeo, R.; Montaldo, S.; Oniciuc, C., Biharmonic submanifolds in spheres, Israel J. Math., 130, 109-123 (2002) · Zbl 1038.58011 · doi:10.1007/BF02764073
[8] Cao, Xiangzhi; Luo, Yong, On p-biharmonic submanifolds in nonpositively curved manifolds, Kodai Math. J., 39, 3, 567-578 (2016) · Zbl 1355.53015 · doi:10.2996/kmj/1478073773
[9] Chen, Bang-Yen, Total mean curvature and submanifolds of finite type, Series in Pure Mathematics 1, xi+352 pp. (1984), World Scientific Publishing Co., Singapore · Zbl 0537.53049 · doi:10.1142/0065
[10] Chen, Bang-Yen, Finite type submanifolds in pseudo-Euclidean spaces and applications, Kodai Math. J., 8, 3, 358-374 (1985) · Zbl 0586.53022 · doi:10.2996/kmj/1138037104
[11] Chen, Bang-Yen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math., 17, 2, 169-188 (1991) · Zbl 0749.53037
[12] Chen, Jian Hua, Compact \(2\)-harmonic hypersurfaces in \(S^{n+1}(1)\), Acta Math. Sinica, 36, 3, 341-347 (1993) · Zbl 0782.53045
[13] Defever, Filip, Hypersurfaces of \({\bf E}^4\) with harmonic mean curvature vector, Math. Nachr., 196, 61-69 (1998) · Zbl 0944.53005 · doi:10.1002/mana.19981960104
[14] Dimitri{\'c}, Ivko, Submanifolds of \(E^m\) with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica, 20, 1, 53-65 (1992) · Zbl 0778.53046
[15] Eells, James, Jr.; Sampson, J. H., Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86, 109-160 (1964) · Zbl 0122.40102
[16] Fu, Yu, Biharmonic hypersurfaces with three distinct principal curvatures in spheres, Math. Nachr., 288, 7, 763-774 (2015) · Zbl 1321.53065 · doi:10.1002/mana.201400101
[17] Han, Yingbo, Some results of \(p\)-biharmonic submanifolds in a Riemannian manifold of non-positive curvature, J. Geom., 106, 3, 471-482 (2015) · Zbl 1329.58010 · doi:10.1007/s00022-015-0259-1
[18] Han, Yingbo; Zhang, Wei, Some results of \(p\)-biharmonic maps into a non-positively curved manifold, J. Korean Math. Soc., 52, 5, 1097-1108 (2015) · Zbl 1325.58006 · doi:10.4134/JKMS.2015.52.5.1097
[19] Hasanis, Th.; Vlachos, Th., Hypersurfaces in \(E^4\) with harmonic mean curvature vector field, Math. Nachr., 172, 145-169 (1995) · Zbl 0839.53007 · doi:10.1002/mana.19951720112
[20] Hornung, Peter; Moser, Roger, Intrinsically \(p\)-biharmonic maps, Calc. Var. Partial Differential Equations, 51, 3-4, 597-620 (2014) · Zbl 1314.58006 · doi:10.1007/s00526-013-0688-3
[21] Jiang, Guo Ying, \(2\)-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A, 7, 4, 389-402 (1986) · Zbl 0628.58008
[22] Jiang, Guo Ying, \(2\)-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A, 7, 2, 130-144 (1986) · Zbl 0596.53046
[23] Jiang, Guo Ying, The conservation law for \(2\)-harmonic maps between Riemannian manifolds, Acta Math. Sinica, 30, 2, 220-225 (1987) · Zbl 0631.58007
[24] Luo, Yong, On biharmonic submanifolds in non-positively curved manifolds, J. Geom. Phys., 88, 76-87 (2015) · Zbl 1307.53047 · doi:10.1016/j.geomphys.2014.11.004
[25] Luo, Yong, Liouville-type theorems on complete manifolds and non-existence of bi-harmonic maps, J. Geom. Anal., 25, 4, 2436-2449 (2015) · Zbl 1335.58012 · doi:10.1007/s12220-014-9521-2
[26] Luo, Yong, The maximal principle for properly immersed submanifolds and its applications, Geom. Dedicata, 181, 103-112 (2016) · Zbl 1341.53096 · doi:10.1007/s10711-015-0114-4
[27] Ou, Ye-Lin, Biharmonic hypersurfaces in Riemannian manifolds, Pacific J. Math., 248, 1, 217-232 (2010) · Zbl 1205.53066 · doi:10.2140/pjm.2010.248.217
[28] Ou, Ye-Lin; Tang, Liang, On the generalized Chen’s conjecture on biharmonic submanifolds, Michigan Math. J., 61, 3, 531-542 (2012) · Zbl 1268.58015 · doi:10.1307/mmj/1347040257
[29] Liang, Tang; Ou, Ye-Lin, Biharmonic hypersurfaces in a conformally flat space, Results Math., 64, 1-2, 91-104 (2013) · Zbl 1275.58013 · doi:10.1007/s00025-012-0299-x
[30] Maeta, Shun, Biharmonic maps from a complete Riemannian manifold into a non-positively curved manifold, Ann. Global Anal. Geom., 46, 1, 75-85 (2014) · Zbl 1315.58011 · doi:10.1007/s10455-014-9410-8
[31] Maeta, Shun, Properly immersed submanifolds in complete Riemannian manifolds, Adv. Math., 253, 139-151 (2014) · Zbl 1286.53068 · doi:10.1016/j.aim.2013.12.001
[32] Maeta, Shun, Biharmonic submanifolds in manifolds with bounded curvature, Internat. J. Math., 27, 11, 1650089, 15 pp. (2016) · Zbl 1358.53058 · doi:10.1142/S0129167X16500890
[33] Ma4S. Maeta, Biharmonic hypersurfaces with bounded mean curvature, arXiv:1506.04476v1, preprint. · Zbl 1358.53059
[34] Nakauchi, Nobumitsu; Urakawa, Hajime, Biharmonic submanifolds in a Riemannian manifold with non-positive curvature, Results Math., 63, 1-2, 467-474 (2013) · Zbl 1261.58011 · doi:10.1007/s00025-011-0209-7
[35] Nakauchi, Nobumitsu; Urakawa, Hajime, Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci curvature, Ann. Global Anal. Geom., 40, 2, 125-131 (2011) · Zbl 1222.58010 · doi:10.1007/s10455-011-9249-1
[36] Oniciuc, Cezar, Tangen\c t\u a \c si propriet\u a\c ti de armonicitate, Dissertation, Universitatea “Al. I. Cuza” Ia\c si, Ia\c si, 2002, DGDS. Differential Geometry-Dynamical Systems. Monographs 3, front matter+91 pp. (2003), Geometry Balkan Press, Bucharest · Zbl 1070.53037
[37] Petersen, Peter; Wylie, William, On the classification of gradient Ricci solitons, Geom. Topol., 14, 4, 2277-2300 (2010) · Zbl 1202.53049 · doi:10.2140/gt.2010.14.2277
[38] Yau, Shing Tung, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J., 25, 7, 659-670 (1976) · Zbl 0335.53041
[39] Wheeler, Glen, Chen’s conjecture and \(\epsilon \)-superbiharmonic submanifolds of Riemannian manifolds, Internat. J. Math., 24, 4, 1350028, 6 pp. (2013) · Zbl 1277.53059 · doi:10.1142/S0129167X13500286
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.