×

Properly immersed submanifolds in complete Riemannian manifolds. (English) Zbl 1286.53068

Summary: We consider a properly immersed submanifold \(M\) in a complete Riemannian manifold \(N\). Assume that the sectional curvature \(K^N\) of \(N\) satisfies \(K^N\geqslant -L(1+\mathrm{dist}_N(\cdot ,q_0)^2)^{\frac{\alpha}{2}}\) for some \(L>0\), \(2>\alpha\geqslant 0\) and \(q_0\in N\). If there exists a positive constant \(k>0\) such that \(\Delta|\mathbf{H}|^2\geqslant k|\mathbf{H}|^4\), then we prove that \(M\) is minimal. We also obtain similar results for totally geodesic submanifolds. Furthermore, we consider a properly immersed submanifold \(M\) in a complete Riemannian manifold \(N\) with \(K^N\geqslant -L(1+\mathrm{dist}_N(\cdot ,q_0)^2)^{\frac{\alpha}{2}}\) for some \(L>0\), \(2>\alpha\geqslant 0\) and \(q_0\in N\). Let \(u\) be a smooth non-negative function on \(M\). If there exists a positive constant \(k>0\) such that \(\Delta u\geqslant ku^2\), and \(|\mathbf{H}|\leqslant C(1+\mathrm{dist}_N(\cdot ,q_0)^2)^{\frac{\beta}{2}}\) for some \(C>0\) and \(1>\beta\geqslant 0\), then we prove that \(u=0\) on \(M\). By using the above result, we show that a non-negative biminimal properly immersed submanifold \(M\) in a complete Riemannian manifold \(N\) with \(0\geqslant K^N\geqslant -L(1+\mathrm{dist}_N(\cdot ,q_0)^2)^{\frac{\alpha}{2}}\) is minimal. These results give affirmative partial answers to the global version of the generalized Chen conjecture for biharmonic submanifolds.

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53C40 Global submanifolds

References:

[1] Akutagawa, K.; Maeta, S., Biharmonic properly immersed submanifolds in the Euclidean spaces, Geom. Dedicata, 164, 351-355 (2013) · Zbl 1268.53068
[2] Balmus, A.; Montaldo, S.; Oniciuc, C., Classification results for biharmonic submanifolds in spheres, Israel J. Math., 168, 201-220 (2008) · Zbl 1172.58004
[3] Balmus, A.; Montaldo, S.; Oniciuc, C., Biharmonic hypersurfaces in 4-dimensional space forms, Math. Nachr., 283, 1696-1705 (2010) · Zbl 1210.58013
[4] Caddeo, R.; Montaldo, S.; Oniciuc, C., Biharmonic submanifolds of \(S^3\), Internat. J. Math., 12, 867-876 (2001) · Zbl 1111.53302
[5] Caddeo, R.; Montaldo, S.; Oniciuc, C., Biharmonic submanifolds in spheres, Israel J. Math., 130, 109-123 (2002) · Zbl 1038.58011
[6] Caddeo, R.; Montaldo, S.; Piu, P., On biharmonic maps, Contemp. Math., 288, 286-290 (2001) · Zbl 1010.58009
[7] Calabi, E., An extension of E. Hopfʼs maximum principle with an application to Riemannian geometry, Duke Math. J., 25, 45-56 (1958) · Zbl 0079.11801
[8] Chen, B.-Y., Some Open Problems and Conjectures on Submanifolds of Finite Type (1988), Michigan State University
[9] Chen, B.-Y.; Ishikawa, S., Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces, Kyushu J. Math., 52, 167-185 (1998) · Zbl 0892.53012
[10] Cheng, S.-Y.; Yau, S.-T., Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math., 28, 333-354 (1975) · Zbl 0312.53031
[11] Cheng, S.-Y.; Yau, S.-T., Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math., 104, 407-419 (1976) · Zbl 0352.53021
[12] Chow, B.; Lu, P.; Ni, L., Hamiltonʼs Ricci Flow, Grad. Stud. Math., vol. 77 (2006), Amer. Math. Soc. · Zbl 1118.53001
[13] Defever, F., Hypersurfaces of \(E^4\) with harmonic mean curvature vector, Math. Nachr., 196, 61-69 (1998) · Zbl 0944.53005
[14] Dimitrić, I., Submanifolds of \(E^m\) with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sin., 20, 53-65 (1992) · Zbl 0778.53046
[15] Eells, J.; Lemaire, L., Selected Topics in Harmonic Maps, CBMS Reg. Conf. Ser. Math., vol. 50 (1983), Amer. Math. Soc · Zbl 0515.58011
[16] Hasanis, Th.; Vlachos, Th., Hypersurfaces in \(E^4\) with harmonic mean curvature vector field, Math. Nachr., 172, 145-169 (1995) · Zbl 0839.53007
[17] Jiang, G. Y., 2-Harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A. Chinese Ann. Math. Ser. A, Note Mat., 28, 209-232 (2008), English transl.: · Zbl 1200.58015
[18] Loubeau, E.; Montaldo, S., Biminimal immersion, Proc. Edinb. Math. Soc., 51, 421-437 (2008) · Zbl 1144.58010
[19] Maeta, S., Biminimal properly immersed submanifolds in the Euclidean spaces, J. Geom. Phys., 62, 2288-2293 (2012) · Zbl 1252.53004
[20] Maeta, S.; Urakawa, H., Biharmonic Lagrangian submanifolds in Kähler manifolds, Glasg. Math. J., 55, 465-480 (2013) · Zbl 1281.58009
[21] Nakauchi, N.; Urakawa, H., Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci curvature, Ann. Global Anal. Geom., 40, 125-131 (2011) · Zbl 1222.58010
[22] Nakauchi, N.; Urakawa, H., Biharmonic submanifolds in a Riemannian manifold with non-positive curvature, Results Math., 63, 467-474 (2013) · Zbl 1261.58011
[23] Ou, Y.-L.; Tang, L., On the generalized Chenʼs conjecture on biharmonic submanifolds, Michigan Math. J., 61, 531-542 (2012) · Zbl 1268.58015
[24] Yau, S.-T., Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28, 201-228 (1975) · Zbl 0291.31002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.